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Executive Summary of "Vibration Dynamics and Control of Bladed Disk Assemblies"

This final report documents the work performed at Purdue University during the period of

November 1988 to December 1990. The original AFOSR Contracts (#AFOSR-89-0002,

AFOSR-89-0014) were written for two years. Consequently this research was partially funded

from Professor Nwokahs' PRF grant #670-1667. The objective of the proposed research was to

gain a fundamental understanding of how and why periodically configured mechanical and

structural systems, (in particular bladed-disk assemblies) with cyclic symmetry and nominally

identical sub-structures can display non-uniform amplitudes of vibration when subjected to small

but random parameter perturbations that are often within the component manufacturing

tolerances. A secondary aim of the proposal was to determine ways of passively/actively (if

possible) controlling these uneven vibration amplitudes. This work specifically dealt with the

influence of the double (degenerate) eigenvalues present in every cyclic mechanical system and

their subsequent splitting under small perturbations, on the uneven vibration amplitudes of the

components.

Status:

The work associated with the principal objectives of the project is almost completed and is

included in this final report. The procedure for detecting a priori which degenerate eigenvalue

pairs will split under given parameter perturbations has been formalized by use of finite group

representation theory and is presented in Appendix 1. The procedure for accurately unfolding

the singularities induced by the splitting of the double modes of cyclic systems has been

formalized by the use of a singular perturbation analysis technique which is valid for any finite

order cyclic system and is included in Appendix 2.
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The topological basis for the singularities induced by the double modes and the

consequences there of are carefully examined and detailed in Appendix 3.

In contra-distinction from recent work in the bladed-disk research literature, numerical

studies which show that uneven amplitudes of vibration in perturbed cyclic systems can arise

both under strong coupling as well as the weak coupling conditions is included in Appendix 4.

A systematic framework has now been established for a detailed study of perturbed cyclic

systems. Future efforts will be aimed at completing any remaining theoretical analysis,

development of computational algorithms for such analysis, passive structural redesign to avoid

localized high vibration amplitudes and experimental validation of the analytical results.

Publications

Six papers have been developed from this work. The first is essentially Appendix 1. The

second and third are included in Appendix 2. The fourth is given in Appendix 3, while the rest

are in conference proceedings as given below.

I. Happawana, G.S., Bajaj, A.K., Nwokah, O.D.I., On the dynamics of perturbed symmetric

systems. Accepted for presentation and publication in conference proceedings for 13th

Biennial ASME Conference on Mechanical Vibration and Noise, September 22-25, 1991,

Miami, Florida.

2. Happawana, G.S., Bajaj, A.K., Nwokah, O.D.I., A singular perturbation perspective on

mode localization. J. Sound and Vibration, (To appear).

3. Happawana, G.S., Bajaj, A.K., Nwokah, O.D.I., A singular perturbation analysis of

eigenvalue veering and mode localization in linear chain and cyclic systems.
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L Sound and Vibration, (Submitted).

4. Nwokah, O.D.I., Afolabi, D., Damra, F.M., On the modal stability of imperfect cyclic

systems. Control and Dynamic Systems, 35, 137-164, 1990.

5. Afolabi, D., Nwokah, O.D.I., The frequency response of mistuned periodic systems. Proc.

12th ASME Biennial Vibrations Conference, Montreal, Canada, September 1989.

6. Afolabi, D., Nwokah, O.D.I., Effects of mild perturbations on the dynamics of structures

with circulant matrices. Proc. AIAA/ASME/ASCE/AHS Structures, Structural Dynamics

and Materials Conference, Long Beach, CA, 1990.

Personnel

Three faculty members and one graduate student were funded by this contract.

Professor Osita D.I. Nwokah (Resume at the back).

Professor Anil K. Bajaj (Resume at the back).

Professor Dare Afolabi (Resume at the back).

Gemunu S. Happawana (Doctoral Student).

A doctorate degree is expected to be awarded for this work in the next 24 months.

Presentations

Several seminar presentations resulted from this work. Details are contained in the

individual Professors' resumes.
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1. INTRODUCTION

1.1 Problem Statement

The central aim of the present project has been to:

(i) Gain a fundamental understanding of how and why periodically configured mechanical

and structural systems with cyclic symmetry and nominally identical sub-structures can

display non-uniform amplitudes of vibration under differential (i.e., small) parameter

perturbations that are often within the component manufacturing tolerances.

(ii) Design passive and/or active control mechanisms to overcome such possible uneven

amplitudes of vibrations.

1.2 Background and Overview

The study of cyclically configured dynamical systems, otherwise known as bladed-disk

assemblies, has been a very active area of research in structural dynamics over the last 25 years.

It is a measure of the theoretical difficulties involved in an accurate analysis that at the present

time there is no general agreement in the literature as to either the causes of the uneven

component vibration amplitudes or as to which component will vibrate with the highest

amplitude under parameter variations. This is a sine' qua-non to establishing benchmark

specifications for component vibration control. The work performed under this grant in the last

two years clearly indicates that:

(i) Uneven amplitudes of vibration are caused by the modal bifurcation phenomenon or the

sensitive dependence of eigenvectors on small parameter variations under some clearly

defined conditions. [1,2,3]
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(ii) Modal bifurcations in turn are caused by mistuning or small parameter variations from

nominal design values, which are often within the component manufacturing tolerances.

[4]

(iii) Extreme cases of the uneven amplitudes of component vibrations produce the mode

localization phenomenon.

We had shown in the paper in Appendix 3, that very useful qualitative information on

the blade mistuning could be obtained by application of the methodology of singularity

theory to this problem.

To understand mode localization, one must first study modal bifurcations.

Let g. e F c R, where R is an r-dimensional parameter space. If a given structural system

has n degrees of freedom, then the characteristic equation for natural frequencies, (02 = ., can be

written as the n-th order polynomial equation:

G(X, p.) = 0, for some . E r.

It turns out that the characteristic polynomial under appropriate modifications behaves like the

potential function in singularity (or catastrophe) theory. [51 Hence the degenerate critical points

of G(, g) = 0 correspond to the repeated roots (i.e., the repeated eigenvalues) of G(X, 4). By

DG
studying -,- together with appropriate higher order differentials, and G(%., .) = 0, we can

determine the set of all g e r at which G(X, 4) has degenerate eigenvalues. This set, which is

called the bifurcation (or catastrophe) set, partitions the parameter space F into distinct

submanifolds whose boundary is the bifurcation set.

We can conclude from the basic theorems and results from singularity theory and catastrophe
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theory [6,7,8] that the modal behavior of our structural system displays sensitive dependence on

parameters only in the neighborhood of the bifurcation set. We have identified two distinct

degenerate behavior patterns in structural systems, namely:

a) Coupling induced degeneracy,

b) Geometry or symmetry induced degeneracy.

Furthermore, we have noted that one dimensional lattice type periodic structures need to be

divided into two main classes:

(i) The Linear Chain,

(ii) The Cyclic Chain.

Each of these classes has its own peculiar characteristics which are dictated both by the

geometry (boundary conditions) and the physics of the system. For example, in the linear chain,

degenerate and therefore 'seemingly' unpredictable behavior under perturbations appears to

occur only under very weak coupling conditions. Topologically, this behavior is equivalent to

an unfolding of the m-fold (here m is the number of nominally identical subsystems which are

weakly coupled) degeneracy: (X - 02)m = 0. This corresponds to what Pierre has, in a series of

papers, consistently referred to as a perturbation of the uncoupled system behavior. [9,10,11]

This behavior does not exist under strong coupling conditions.

On the other hand for cyclic systems, even under very strong coupling conditions, extra

degeneracy is induced by the cyclic symmetric nature of the system matrices. It is then well

known that cyclic systems have several pairs of degenerate (coincident) eigenvalues which is

distinct from the case of linear chairs where no degeneracy or multiplicity of eigenvalues arises

under strong coupling conditions. The crucial observation is that because of the coincidence of
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eigenvalues, and the continuity of eigenvalues with respect to parameters, cyclic systems (to

which bladed-disk assemblies belong) always operate in the neighborhood of the bifurcation set.

For cyclic systems it is therefore of great interest to determine the relative influence of coupling

and geometry in the subsequent degenerate system behavior. Since a tuned bladed-disk assembly

has pairs of degenerate eigenvalues, the parameters corresponding to the tuned state are clearly a

subset of the bifurcation set.

The number of degenerate pairs of eigenvalues as well as the effect of different types of

perturbations depends on the nature of the symmetry. Some of the qualitative ramifications of

the geometric symmetry can be studied using the theory of groups. The effects of symmetry

preserving and symmetry breaking perturbations can be qualitatively studied using the ideas

from perturbation of group action as well as the singularity theory for symmetric systems. While

the results for universal unfolding of positive definite matrices and the behavior of eigenvalues

for symmetry preserving perturbations are available [15], those for perturbations that destroy

symmetry are not, and we will later present some examples displaying the interesting

consequences of various types of perturbations. Finally, neither the group theory, nor the

singularity theory, provide quantitative results such as formulas for the computation of the

perturbed eigenvalues and eigenvectors as a function of the perturbation parameters. Only such

information can provide the measures for eigenvalue loci veering and mode localization, and one

possible tool for developing these expressions/results is the singular perturbation theory. Thus,

tools or ideas from the disciplines of group theory, singularity theory, and singular perturbation

theory, are all needed to make a strong headway in understanding the phenomenon of mode

localization.
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2. GROUP THEORY AND CYCLIC SYMMETRY

Although it had been observed that turned bladed-disk assemblies always have many pairs of

degenerate eigenvalues, no theoretical justification for this phenomenon was available in the

bladed-disk literature. Our first order of business in the investigation was therefore to obtain a

formal explanation for this phenomenon. The coefficient matrices in the equations of motion of

forced bladed-disk assemblies as well as the dynamic stiffness matrices are always banded

circulant matrices [12]. These matrices have unique symmetry properties [13] which

immediately indicate that group theory would be applicable. It turns out that the set of allowed

symmetry operations in a bladed-disk assembly namely: rotations about a fixed axis, reflections

about a fixed axis and vibrations about a reference point, can be captured by the operations of the

Dihedral group D. [14]. By purely formal arguments from group theory and standard results for

the Dihedral group, we are able to show the number and order of degenerate eigenvalues which

any finite order bladed-disk assembly can have. Furthermore by considering the irreducible

representations to which the translational, rotational, and vibrational modes belong, along with

the corresponding Hamiltonians, we can sufficiently study the effects of mild perturbations on

these degenerate doublets. For example under a given parameter variation, the symmetry

operations generate a new group which is necessarily a subgroup of the original group Dn. By

comparing the properties of this new sub-group with those of the original group, we are able to

determine if such a perturbation would lead to a splitting of any of the degenerate pairs of

eigenvalues. It may then be possible to determine the minimum number of parameters which

must be varied simultaneously in order for a certain number of degenerate eigenvalue pairs to be

split at the same time. By now concentrating on those perturbations that lead to splitting of

degenerate pairs we can more fully study the effects of these perturbations on the forced
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amplitude response of the assembly. These results are summarized in the paper in Appendix 1.

3. SINGULARITY THEORY AND CYCLIC SYMMETRY

It is known from singularity theory that the splitting of eigenvalues of a matrix can lead to

rapid changes in the eigenvectors, which in turn can result in significant changes in the forced

amplitude of response of the assembly to external aerodynamic loading. Since the group theory

results indicate that bladed-disk assemblies could only have degenerate pairs of eigenvalues, the

simplest essential properties of any finite order bladed-disk assembly are captured by the

properties of an assembly of order 3. Note that we need a 3rd order assembly in order to inscribe

a circle and hence obtain a cyclic system. A third order tuned assembly would thus have a

degenerate pair of eigenvalues and an isolated eigenvalue. We may therefore study the influence

of perturbations in the masses, ground springs and coupling springs on the dynamics of this

system. From Arnold's results in singularity theory [16], it is self evident that under mild

parameter variations interest should be concentrated not on the isolated eigenvalue but only on

the subsequent behavior of the degenerate doublet. To understand its behavior it is necessary to

study the behavior of any arbitrary doublet and the subsequent eigenloci as a function of

parameters in a manner reminiscent of root loci behavior in classical control theory. The

simplest doublet which contains the essential ingredients of the problem turns out to be the

symmetric, coupled double pendulum shown in figure 1 in Appendix 2. The essense of this

study was to discover the relation of the eigenloci to parameter variations and the corresponding

eigenvectors. We had conjectured that:

(i) Uneven amplitudes of vibration in symmetric structural systems are caused by the

sensitive dependence of system eigenvectors or parameters.
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(ii) Sensitive dependence of eigenvectors on parameters gives rise under appropriate

conditions to the mode localization phenomenon.

(iii) Rapid convergence-divergence (veering) of eigenvalues is a signature for the sensitive

dependence of eigenvectors on parameters and hence of the possible existence of mode

localization under appropriate conditions.

If the conjecture were to be true, we hoped to oe able to obtain an estimate for the

eigenvector sensitivity measure in an appropriate manner as well as an estimate for the

eigenvector rotations resulting from any mild perturbation. If extreme imperfection sensitivity

were present, it was expected that both measures would show a singularity which is an indication

of imperfection sensitivity. Furthermore these were expected to occur at the parameter values of

maximum curvature of the eigenloci. If the double pendulum were decoupled (no coupling

spring) there then would exist two independent but equal vibration frequencies. By including

very weak coupling between the masses we could study system behavior in the neighborhood of

the erstwhile equal eigenvalues. The study of weakly coupled systems is very important since in

practice the aim has always been towards use of rigid disks, in effect making the inter-blade

coupling very weak indeed. By assuming that the imperfection parameter is a slight difference

in the length of the two pendula, we could thei, 'ady the behavior of the eigenvalues and

eigenvectors of this simple symmetric system under slight changes in coupling and disorder.

4. QUANTITATIVE UNFOLDING OF THE MODAL SINGULARITIES BY SINGULAR

PERTURBATION ANALYSIS

We may therefore write down the characteristic polynomial as a function of both the

coupling parameter and the imperfection parameter. The characteristic polynomial in turn
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behaves identically to a potential function in singularity theory [17]. Thus the degenerate

critical points of this function correspond to the repeated eigenvalues if any. By writing down

the expressions for the eigenvalues as functions of the two parameters, the detailed behavior of

the eigenloci in any neighborhood can be obtained. A regular expansion of these eigenvalues as

a function of the two parameters breaks down (loses uniformity) in the neighborhood of the

critical point (where the eigenvalues are coincident). By applying the techniques of singular

perturbation analysis and appropriate stretching transformations it became possible to obtain the

eigenloci expressions which were uniformly valid over the .1 :.in of definition of the small

parameters and whose loci clearly indicated the veering phenomenon. The same technique was

also applied to the eigenvector expressions as functions of the parameters. From these

expansions, expressions were obtained both for the modal sensitivity measure and the

eigenvector rotation measure under slight parameter variations. All the results obtained,

confirmed the conjecture. The first part of these results are to appear in the Journal of Sound and

Vibration while the second part involving the full eigenvector work has been submitted to the

Journal of Sound and Vibration. These manuscript preprints are enclosed in Appendix 2. We

can now claim that we understand fairly well the causes of localization phenomenon for simple

doublets. We note however that the double pendulum analysis displayed the noted strange

behavior only under very weak coupling conditions. Our work had shown earlier (see Appendix

4) that for bladed-disk assemblies uneven amplitudes of vibration and hence mode localization

could occur even under very strong coupling conditions. We therefore had to discover under

what conditions the double pendulum analysis remained valid also for the bladed-disk assembly.

It turns out that the pendulum analysis remains valid for the bladed-disk, irrespective of the

coupling strength. However by systematically reducing the coupling, more complicated
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singularities appear. This is because at very low coupling the bladed-disk behaves like a

perturbation of a triple degeneracy which in general requires at least three parameters to unfold

(completely analyse). On the other hand for the double pendulum, two parameters were enough

to unfold the doublet degeneracy.

The lessons learned so far are thus that for the bladed-disks even under strong coupling

conditions mode localization can occur. On the other hand for the double pendulum or linear

chains in general, mode localization occurs only under weak coupling. This finding contradicts

the current view in bladed-disk research [I I], which holds that in both linear chains (coupled

pendula) and cyclic chains (bladed-disk assemblies) mode localization only occurs under very

weak coupling. What is however true for bladed-disk assemblies, is that under very weak

coupling new singularity types (which do not exist under strong coupling) appear. We do not yet

understand the full effects of these new singularity types. We however conjecture that they will

further complicate the modal behavior of the assembly under aerodynamic loading. The key

question we seek to answer presently is which of either symmetry breaking perturbations or

coupling induced perturbations have more influence on the modal behavior of a bladed-disk

assembly. Are there regimes where each has more influence than the other and if so, what is the

transition region? If we could answer these questions then we could specify apriori the

acceptable range of coupling so that design effort could be concentrated on symmetry breaking

bifurca6ons and how to prevent their effects from being felt at the blade amplitudes. The

singular perturbation analysis acts as an unfolding of the singularities involved, since by this

methodology we are able to obtain detailed information on the modal behavior of the structure in

the neighborhood of the singularities.
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5. THE CONTROL PROBLEM

We have not carried out the control design component of the project as stated in the

statement of work because it has only been in the last six to eight months that a thorough

understanding of the structural dynamics has emerged. We however are clear on the work that

needs to be done. The next stage of our work will involve classification of different

perturbations with the corresponding amplitudes of vibration. The control problem in one

possible approach is a structural redesign that deliberately breaks the symmetry by splitting the

degenerate eigenvalues with only those perturbations that do not lead to amplification of

vibration amplitudes. Provided the split eigenvalues are not in the neighborhood of the

bifurcation set, all further slight perturbations would not be expected to display extreme

imperfection sensitivity. Another alternative control methodology which we are presently

considering is a regular adapative control scheme that seeks by means of active addition or

subtraction of control masses and springs to restore symmetry whenever the symmetry breaking

signature is observed. Under this scheme the degree of sensitivity and eigenvector rotation will

determine the amount of modification called for and the location where to apply it. However

this kind of scheme seems to us -to be more appropriate for aerospace structural systems than to

turbine rotor disks.

6. CONCLUSIONS

The results obtained from the study in the last two years have helped to clarify and unify

several conflicting viewpoints within the bladed-disk research community. What is more

significant is that it has led to a better understanding of the potentially very complicated

dynamical structure which ensues when geometric (spatial) symmetry interacts with weak
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coupling in periodic structures. Without this understanding any attempts at either structural

redesign or structural control of such systems would inevitably be frought with danger. We are

currently continuing work on the forced response of cyclic systems with a view to a more

complete mathematical characterization of the relationship between amplitudes of vibration,

mode localization, and perturbation type. We are also generalizing the singular perturbation

approach to linear chains and cyclic symmetric systems of any finite order. We believe that the

development of the structural control schemes would be worthless without this full

understanding.
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STATEMENT OF WORK

The principal aim of the proposed research is to carry out an in-depth mathematical and

numerical investigation of the dynamics of mistuned cyclic systems, by use of some new and

extremely powerful topological theory of dynamics, and to develop simple control schemes for
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preventing unacceptable vibration characteristics in such systems. To accomplish this task, we

will:

(i) Identify the topological structure of nominally tuned bladed-disk assemblies, the order of

the degeneracy in the natural frequencies, the minimum number of canonical parameters

needed to unfold the degeneracy, and the classification of the bifurcation set in the

parameter space.

(ii) Use the Jordan-Arnold canonical structure theory to completely characterize all the blade

motion forms expected when a given nominally tuned system is generically mistuned.

(iii) Relate the canonical unfolding parameters to the disk assembly elements of mass,

generalized damping and generalized stiffness; and hence determine which mistuning

parameters or combinations thereof, govern the escalation of forced response amplitudes

and/or unacceptable blade motions.

(iv) Employ the control methodologies of either entire eigenstructure assignment or quadratic

optimization to deliberately mistune the blade assembly passively so that eigenvalue

degeneracy under slight parameter variations are avoided and at the same time the

parameter combinations which lead the assembly to unacceptable blade motions (the

bifurcation set) are never allowed to occur.

(v) Carry out a thorough numerical simulation on typical nominal and perturbed bladed-disk

assemblies to verify and validate the predictions of the new topological theory.

The above will set the stage for a controlled laboratory hardware experimental verification,

which we hope to undertake in a follow-up project.
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ABSTRACT

In this work, we consider the dynamics of linear mechanical systems possessing geometri-

cal symmetry subject to differential or small parameter variations. The machinery of group

theory including the irreducible group representations, and the consideration of representations

to which the translational, rotational and vibrational modes belong, allow us to predict apriori,

the number and the order of degenerate eigenvalues in the symmetric system. By considering

the resultant Hamiltonians of the perturbed symmetric system, we show further the effects of the

perturbations on the eigenvalues and their degeneracies. Since the vibration modes of systems

with degenerate eigenvalues are known to display sensitive dependence on parameters, we may

use these techniques to identify in principle the possibility of maximum vibration amplitudes and

where they are likely to occur. Applications of these ideas include the mistuned turbine rotor

bladed disk assemblies.
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LIST OF SPECIAL SYMBOLS

F c (R) Reduced cartesian representation of a group element R.

r t
nd (R) Reduced translational representation of a group element R.

r r.w Reduced Rotational representation.

r Vm, Reduced Vibrational representation.

F(R), F (R) Matrix representations.

F (R) it representation.

F (R) Matrix element of the Atat row and the v t column of the matrix representing the

group element R in the iat representation.

F*(R) Complex conjugate of r v(R).

Xi(R) Character of a group element R in the iat matrix representation.

ai Number of times P (R) appears in the reducible representation.

'Row vector.

M Mass matrix.

K Stiffness matrix.
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1. INTRODUCTION

Eigenvalues and eigenvectors of a vibrating system are important for characterizing its

dynamical response. The eigenvalues are related to natural frequencies whereas the eigenvectors

correspond to special forms of displacements when vibrating at a natural frequency. Exact

evaluation of the eigenvalues of higher order vibrating systems in general involves considerable

effort and is time consuming. Most cyclic symmetric systems possess degenerate eigenvalues

[ 1,2]. Systems with degenerate eigenvalues are expected to display severe sensitive dependence

on parameters [3] that destroy the symmetry or degeneracy.

In the eigenvalue problem if there is any symmetry of the system, the application of group

theory enables us to decide, at the outset, exactly the number of distinct eigenvalues together

with their respective degrees and degeneracies.

By considering the symmetry operations of the physical system at the equilibrium points,

the representing group can be formulated. Using group theoretical ideas, we can predict apriori

the degeneracy of the eigenvalues. This is accomplished by the use of the irreducible represen-

tations of this group which is obtained by using the orthogonality theorem and the reduction for-

mula [3]. Once the irreducible representations are known, we can find the translational, rota-

tional and vibrational modes of the system. These results are well known in the physics litera-

ture on group theory but have not been used sufficiently effectively in the vibration community.

The essential purpose of this work is to summarize some of these results and show some applica-

tions as they relate to the symmetric bladed disk assemblies.

In general, a reduced cartesian representation of a group element R, Fr,(R), can be writ-

ten as
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F c(R) = r I (R) rf-, (R) r " (R),

where r "(R), Iw(R), and r (R) are translational, rotational and vibrational reduced carte-

sian representations of a group element R. In three dimensional vibrating systems, six of the

normal modes belong to the zero frequency modes and correspond to pure translations and pure

rotations. Since we are primarily interested in vibrational modes (non zero frequency) the zero

frequency modes are not discussed further in this work.

Some of the symmetry of the physical system may be lost once the system is subjected to

parameter perturbations. The perturbed system may, however, still possess some symmetry

which may be considered to be a subgroup of the group characterizing the unperturbed or origi-

nal system. Applying group theoretic ideas now to this subgroup we can predict the splitting of

the degeneracy of eigenvalues. As a result we can see whether the degelteracy of some of the

eigenvalues has or has not been removed.

Ideas similar to the ones proposed in this work were used by R. Perrin [4] in 1971 for a

thin circular ring. In his paper group theoretical arguments were applied to a ring where pertur-

bation was applied in the form of equal masses attached to the ring at the vertices of an inscribed

regular nth order polygon. Further, eigenfrequencies and cigenfunctions for the unperturbed ring

were assumed to be known apriori. Knowledge of these degenerate pairs of eigenfunctions was

used to find the characters of each irreducible representation of the corresponding Dn group for

the perturbed system. In the present work, group theoretical techniques are developed without

apriori assuming any knowledge of either the eigenfrequencies or the cigenfunctions for the cir-

culant symmetric system. Also, parametrically perturbed cases were not discussed by Perrin.

Parametric perturbations are important in turbine blade vibration problems where a slight pertur-

bation can lead to loss of cyclic symmetry, which in turn can induce rogue blade failure under
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certain circumstances [5,6].

2. THE GROUP THEORETICAL CONCEPTS

We first define some standard terms from the literature on group theory. One of the stan-

dard references is the text by Hamermesh [1]. Following definitions and theorems are obtained

from (21.

2.1 Definition 1. Symmetry operations: All the operations which leave a system

configuration unchanged are called symmetry operations.

In physical terms, this refers to the movement of a system in such a

way that it interchanges the positions of various particles of the system but

results in the system looking exactly the same as before the symmetry

operation. For instance some of the symmetry operations are defined as

follows:

E: Identity. The system is not rotated at all or rotated by 21c about any

axis.

Cn Rotation: This is an operation which effects rotation through an

angle 2K/n about an axis, fixed in space, where n is an integer. In

addition we can have Cn which is Cn raised to the power k, that is,

a rotation through an angle 2ck/n about the same axis. Cn is a rota-

tion through an angle 21 and is the identity operation, since a rota-

tion through 2x leaves the object unchanged. n is known as the
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multiplicity of the axis, and the latter is called on n fold axis. If

n=2,3.... then, respectively, we get 2-fold, 3-fold... axes. If a sys-

tem has more than one axis of symmetry then the axis with the

highest value of n is called the principal axis.

Definition 2. Group: A set of elements (ab,c..) is called a group G, if a multiplication

rule is defined for any two elements so that the product ab has a definite

meaning and the following four postulates are satisfied:

1. Closure: If a and b belong to the set, then ab also belongs to the set.

2. Associativity: a(bc) = (ab) c.

3. There exists the identity element e such that ae = ea = a for any a

belonging to G.

4. There exists the inverse element, i.e., for each element a, there is a

corresponding element b such that ab - ba = e. b is called the

inverse element of a and is denoted by b =a - .

Definition 3. D. group: This group concerns a system possessing one n-fold axis called

the principal axis and n 2-fold axes symmetrically placed in a plane per-

pendicular to the principal axis. The n-fold axis provides the n elements

of the cyclic group Cn. The group also contains one C2 element provided

by every perpendicular 2-fold axis where we do not count C2 = E because

E only occurs once in a set of group elements and it has already appeared

in the n elements of C. The group D, therefore contains a total of 2n ele-

ments.
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Definition 4. Equivalent and reducible representations: Two representations are said

to be equivalent if the two matrices representing any element R of the

group are related by the equation

r' (R) = T-1 r (R) T, (1)

where T is any nonsingular square matrix (operator). However, if there

does not exist any matrix T which transforms F' (R) into F (R), then

r' (R) and r (R) are said to be inequivalent.

A reduced representation of a group element R, Fred (R), is com-

posed of two or more irreducible representations:

[red (R) R 0 0] (2)

We write this by using the symbol G and

fred (R)--ri (R) ari (R). (3)

Definition 5. XI(r), Character of a group: The character of a group element R in the ith

matrix representation of the group element is the trace (sum of diagonal

terms) of the matrix.

2.2.1 Orthogonality Theorem: All the vectors formed by the inequivalent irreducible unitary

representations are orthogonal to each other, or:

ri*" (R) FJjv. (R)= 8jS,Sv.,

R

where i and j denote the representation, t and i' denote rows of the matrix elements and v and
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v' denote the columns of the matrix elements, g is the order of the group and li is the dimen-

sionality of the ith representation. ri (R) is the matrix element of the gLh row and vth column

of the matrix representing the group element R in the ith representation, and * denote its complex

conjugate equivalent to r (R)

2.2.2 Character table: The character table is formed by considering the characters of group

elements. The character of a group element is important because the character is unaltered by a

similarity transformation. On the other hand since the character of equivalent irreducible

representations are identical a table of characters is a unique way to characterize a group. The

general form of a character table is:

N, c (1) N2 c (2) .... N. c (r)

F I(R) X1 (c (1)) X1 (c (2))'" X1 (c (r))

r 2 (R) X2 (c (1)) ........... i 2 (c (r))

rr(R) Xr (c (1)) ........... Xr (c (r))

where

c(r): the nature of elements in the class,

Ni: number of elements in the class, and

Fi: ih irreducible representation.

The character tables of the groups can be obtained by the application of the following rules:

(1) Number of inequivalent representations is equal to the number of classes.
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(2) i11? = g, n- number of irreducible representations.
3=1

(3) , X* (R) XJ (R) = g 8 ij, where Xi(R) denote the character of a group element R in the ith
R

matrix representations.

n . H(4) y Xi* (Ck) Xi(Ck) = g 1.-
1=1 Nk

In labeling the rows of the character table, the following standard notation is used.

(1) One-dimensional representations are labeled as A if the character of the elements Cnk about

the principal rotation axis are +1 for all k, and as B if the characters Cn a (-)k for all k.

(2) If a group has more than one A or B representation they are given subscripts 1 and 2

according to whether the character is +1 or -1 in the column representing a rotation or

improper rotation about an axis other than the Principal axis. For example, in the groups

Dn a representation is given a subscript I if the character under C2 about the axis is + I and

2 if it is -1.

(3) Two dimensional representations are labeled E.

(4) Three dimensional representations are usually labeled T.

Finally, the reducible representations are used to obtain the irreducible representations by the

applications of the formula

1 ze

aj= Nj e (R) e (R). (4)
9R
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3. VIBRATIONS OF CYCLIC MECHANICAL SYSTEMS

Many vibrating systems possess sufficient symmetry to allow us to use group theory which

reduces the amount of work involved in the calculations and also furnishes us with an insight

into the nature of the vibrations. Consider n nominally identical masses connected via ground

springs kt and coupling springs kc at the edges of an inscribed ndl order regular polygon in a cir-

cle of radius r. Rotational symmetry about one n-fold axis perpendicular to the plane of motion

and n, 2-fold axes give 2n number of elements for the corresponding symmetry group. In fact,

this is the dihedral group Dn . Dn has (2 + - ) conjugate classes when n is odd and (3 + -)
2 2

classes when n is even. Utilizing group character table construction rules [1,2], it can be shown

that the number of possible degenerate eigen levels are:

n even

single degenerate levels = 4

i) double degenerate levels = n - 1 (5)
2

n odd

single degenerate levels = 2
ii) double degenerate levels- n-l (6)

2

Results (i) and (ii) imply that a cyclic symmetric system of this type, at worst, can have double

degenerate vibrational modes for any finite n.

Once the system is subjected to a random parameter perturbation, some of the symmetry

may be lost and consequently, we get a new group which is likely to be a subgroup of the origi-
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nal group. Equations (5) and (6) can be used to get a qualitative information about the new

degenerate eigenvalues of the perturbed system. Since any higher order cyclic symmetric sys-

tem of this type will have at most doubly degenerate eigenvalues it is sufficient to consider an

example with n = 3.

Consider three normally identical masses connected via both, ground springs kt and cou-

pling springs k, at the edges of an inscribed isosceles triangle, in a circle of radius r. We wish

to study the number and degeneracy of the eigenvalues of such systems under random differen-

tial perturbations in the elements (k,, kc, m).

As defined in Section 2, a symmetry operation is one which leaves the undistorted system

indistinguishable from its previous orientation. Such an operation interchanges equivalent

masses. However, in the vibrational state, the system is in a distorted configuration and, when

the symmetry operation is performed on the distorted mass the effect is the same as that obtained

by interchanging displacement vectors amongst equivalent masses. Therefore we can define the

action of a symmetry operation for each mass in a distorted system to be a displacement through

vector Xi from its equilibrium. When a symmetry operation is applied we can assume that the

mass positions remain invariant. Furthermore the symmetry operation can have no effect on the

potential or kinetic energy of the system, or even the angles between the connections. Conse-

quently the quadratic forms of the kinetic energy T and the potential energy V remain invariant

under the action of the group transformations. Group theory can thus be used to determine and

classify the normal modes of the vibrating system.

We begin with the 3N dimensional representation of the group of symmetry operations of

the undistorted system. By reducing this representation using the character table for the

corresponding group, (and reduction of reducible representations) we can determine the
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irreducible representations to which the 3N translational, rotational and vibrational modes

belong. Also we can immediately find the degeneracy of each normal mode. In addition, by

considering the symmetrized basis S, we can bring the mass matrix M and the stiffness matrix K

into block form and thus greatly simplifying the solution of the characteristic or the frequency

equation.

We apply these group theoretic techniques to the problem shown in Figure 1 (4]. This sys-

tem belongs to the group D3 which contains the symmetry operations E, Cj, Cj, C1, C, and

Cc. Now by applying these operations to the nine cartesian coordinates xi, x2 , x3 , Y1, Y2, Y3, z1,

z2 , z3 we obtain their nine dimensional reducible representations. This can be accomplished by

finding the corresponding matrix representation, and using the equation

X' = 1"' (R)X, (7)

where R is the appropriate symmetry operation, and X and X' denote the nine dimensional vec-

tors representing the cartesian coordinates in original and transformed planes respectively. For

example, under the operation of Cj the system configuration in Figure 1 is transformed to the

configuration in Figure 2. This also clearly indicates the manner in which the coordinates

undergo rotation. In Figure 2, the axes z1 , z2 and z3 are pointing out of the plane of the paper.

The new and the old coordinates are related by the relations

(xj, yi,z) -- (x',, y'l, z') (- x2 sin 30 - Y2 cos 30, x 2 cos 30 -y2 sin 30, z2), (8)

(x2, Y2, z2) -*(x' 2, /2. z'2) (-x 3 sin 30 - Y3 cos 30, x3 cos 30 - Y2 sin 30, z3), (9)

(x3 . Y3 z3) -* (x'3, Y'3, z'3) U(- x 3 sin 30 - Y3 cos 30, x3 cos 30 - y 2 sin 30, z 3 ). (10)

In matrix form, equations (8) - (10) are represented as
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x 0 -i/1 o 0 0 0 0"
; 0 0 -1/2 0 0 -3"/2 0 00 x2

-1/2 0 0 -_5/2 0 0 0 0 0 X3

Y1 0 '/2 0 0 -1/2 0 0 00 Y I
Y = 0 0 '/2 0 0 -1/2 0 0 0 Y2. ( 1)

Y3 -_3n2 0 0 -1/2 0 0 0 0 0 Y3
zl0 0 0 0 0 0 0 1 0 zI

0 0 0 0 0 0 0 0 1
z2 0 0 0 0 0 1 0 0 Z

I Z3Z3

where the coefficient matrix is the matrix representation of the group element C1. The character

(trace) of the matrix is then

XC (CD = 0. (12)

Since Ci and Ci belong to the same class, Xc (C) = 0. It is clear that Xc (E) = 9. In a similar

manner

XC (CD=- I,

Xc (CD)=- I, (13)

a°c) = - i
Xc (C)M..1

Now using the character table for D3 (Table 1) and equation (4), we can determine the

irreducible components of r C (R) as:

Table I

D 3  E 2 C 3  3 C2

r(1  AI 1 1 1

r (2) A2  1 1 -1 TZ Rz

r (3) E 2 -1 0 Tx, Ty Rx, Ry
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Here, A1, A2 represent one dimensional representations, E represents two dimensional

representations, and T., Ty, T. and R., Ry, R. represent unit translational and rotational vectors

respectively. Consequently

1aA, =-(9 x 1 +2 (Ox 1)+ 3 (1 x-1))= I,

1
aA2 =- (9 x 1 + 2 (Ox 1)+ 3 (-1 x-1))=2,

1
aA3 =-(9 x 2+2(Ox-)+3 (1 xO))=3.

Hence rc, (R) = Al @ 2A2 0 3E. Since the system has three masses, N = 3 and there are 9

degrees-of-freedom for the system. Since 3N - 6 = 3, we have only three vibrational modes, the

other six corresponding to zero frequency modes and to pure rotations and pure translations.

This can be seen from the character table,

Ft (R) = A2 G E,

I' (R) =A 2 0 E.

Since we are primarily interested in the vibrational modes of the system and

1" (R) = Al 9 2A2 9 3E,

1 '(R) 0 I (R) = 2A2 0 2E,

we get F" (R) = A, G E.

Since A, is one dimensional, the vibrating system has one non degenerate eigenvalue and

since E is 2 dimensional there is a one degenerate eigenvalue. These results are consistent with

the exact eigenvalues given in appendix A.

Using group theory arguments to predict the number of degenerate eigenvalues becomes



-16-

very useful as the order of the system increases since the exact calculation of eigenvalues for

such high order systems becomes increasingly burdensome.

4. THE PERTURBED SYSTEM

Suppose that the Hamiltonian of the unperturbed system is H0 . Then H0 is invariant under

its symmetry group G. Suppose further that the system is subjected to a perturbation with Ham-

iltonian V. The perturbed Hamiltonian H = H0 + V, will then have a symmetry group which is

necessarily a subgroup of G. Two possible cases arise.

CASE I

If the perturbation V has symmetry at least as great as HO, the group G will still be the

symmetry group of the total Hamiltonian H. In this case the possible types of eigenvalues will

be unchanged by the perturbation. In fact no splitting of degenerate levels occurs.

CASE II

If the perturbation V has symmetry lower than Ho, the total Hamiltonian H will have a

symmetry group G1 which is a subgroup of G. This subgroup G1 is invariant under the perturba-

tion. Because of the perturbation, some of the degenerate eigenvalues may split. This can be

explained by using group representation theory.

For a given representation D(G) of the group G, we now obtain the invariant subgroup G1.

Even if D(G) is an irreducible representation of G, the representations of G1 which we derive in

this way may be reducible. In other words, even though we cannot find a subset of the basis vec-

tors of D(G) which is invariant under all transformations of the group G, we may be able to find
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a subspace which is invariant under all transformations belonging to the eigenvalue X from a

basis of an irreducible representation of G. This representation may be reducible for the sub-

group G1. The perturbation V will then split the level.

We now apply the above ideas and show the appropriate methodology in the context of the

three mass system.

4.1 Ground Spring Perturbed System

First we consider the situation when one of the ground springs is perturbed. The unper-

turbed system can be represented by the group D3 = {E, C3, Cj, Ca, Cb, Cc). Once the system

is subjected to a ground spring perturbation, for this particular system G' = (E, C,) is the invari-

ant subgroup.

The character table for G1 = (E, C.), is as follows:

E C,

A' 1 1

A" 1 -1 .

Considering the part of the character table of 13 which refers to the operations of the sub-

group G1 = (E, Ca, we have

E Ca

E 2 0.

Utilizing (4), the irreducible components are then given by



- 18-

aA'=- (I x 2 x I+ I xOx 1)= I,
2

1
aA,, =- (1 x2x 1 + 1 xO -I)= I.

Thus, the doubly degenerate E level of the unperturbed system splits into single levels A' and A"

of G' under the ground spring perturbation. As a result, degenerate cigenvalue of the perturbed

system separates. Hence, for this particular system we get three distinct eigenvalues. Coupling

spring perturbation leads to a case where there is no invariant subgroup left and consequently,

group theoretical arguments do not work for this particular situation. We conjecture that this is

indicative of those cases where perturbations do not lead to radical changes in the eigenvector

directions.

4.2 The Mass Perturbed System

A system consisting of three particles, two with mass m and the other with mass M, is

illustrated in Figure 3. Considering rotational symmetry of the system, we can see from Figure 3

that this system belongs to the group D2

D2 = (E, C2 .

The character of each of the elements of the group can be obtained from the reducible represen-

tation whose matrix representation is obtained by the use of the coordinate transformation

XI = r (R) X.

Performing these operations, and following the steps along the lines of work in section 3, we can

show that the reducible characters of each element are

XC (C2 )=- 1,
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XC (E) = 9.

Using the character table of D2 and (4), the irreducible components of the reducible representa-

tions can be then determined as

D2  E C2

A 1 1 z Rz

B 1 -1 x,y R , Ry

aA=- xl-lxl =4,

aB= [x1+-lx-1 ]=5.

Therefore,

r'-w (R) = 4A 5B. (14)

In general, r c, (R) =r 1-d (R) a 1r-d (R) a r'-, (R).

By placing a coordinate system XYZ at the center of mass, translations and rotations can be

represented as shown in Figure 4. The representations for C2 and E are given by

Xr (C2)=_1 , (E)=3.

By the application of the ai equations (4), we get

(i) Translation
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aA= - [I x3-Ix ]=I,

I

ah =-[1 x3- I x- 11=2.
2

(ii) Rotation

1aA =- [I x 3- 1 x I] = 1,

ab =- [1 x3- I x- 1]=2.

Therefore,

F- d (R)= A G2B , (15)

['r (R)=AG2B. (16)

Hence from equations (14)-(16), we get the result that

[
'
Vd (R) = 2 A @ B. (17)

This shows that there are three vibrational modes and each eigen level is non-degenerate since A

and B are one dimensional representations.

5. SUMMARY AND CONCLUSIONS

This work uses results from group theory and applies it to perturbed cyclic symmetric

vibratory systems. It is shown that:

a. The number and order of degenerate eigenvalues in a symmetric system can be predicted

apriori by using group theory without explicitly determining the eigenvalues.

b. Cyclic symmetric vibrating systems possess degenerate eigenvalues for n > 2. For strong
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coupling, these eigenvalues occur in doubly degenerate pairs and in single nondegenerate

levels.

c. Random parameter perturbations may partially or totally destroy the symmetry of the sys-

tem. Accordingly these perturbations lift some of the degeneracy of eigenvalues. As a

result, eigenvalue loci veering [7] occurs when the parameters are continuously varied. This

may also lead to a mode localization or rapid variation in the eigenfunctions [7].
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Appendix A

Equations of motion for the system in Figure 2 can be written in the form:

M+Kx=O , where

E mOO0 a -, k
M= 0m , K=-k a -k,

0 0 M-k k. a

and

a = 2k,~ + k

The eigenvalues are determined by

det IK-032 M I =0.

Therefore,

02 kt 3kc 2 k + 3 c a+ , -- + -, and
I r m 0)2~ m

02 =kt
mr2

This shows that the cyclic symmetric system has a double degenerate eigenvalue and a sin-

gle nondegenerate eigenvalue.
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Figure 1. Model representing the unperturbed three bladed disk assembly in its identity
orientation.

Figure 2. Model of figure ' counter/clockwise rotated by 2x/3 radians about the center of the
system, showing change in cartesian coordinate axes.

Figure 3. Mass perturbed system in its identity orientation.

Figure 4. The representation of the three translations and the three rotations in an XYZ
coordinate system.
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In recent years there has been tremendous interest in the vibrations and structural dynamics

community in the phenomenon of mode localization. This interest stems from the recognition

that large systems composed of nominally identical subsystems inevitably involve minor devia-

tions from the idealized structures and these disorders or perturbations can, under appropriate

conditions, cause disproportionately large deviations from the predicted behavior in the nominal

or idealized system modes. Important technical applications of these include mistuned bladed

disk assemblies (1I] and large space structures (21.

It is well understood by now that the presence of small irregularities in nearly periodic struc-

tures may inhibit the propagation of vibration and localize the vibration modes. Depending on

the magnitude of perturbations (disorder) and on the strength of internal coupling between the

subsystems, the mode shapes may undergo dramatic changes to become strongly localized when

small perturbations are introduced, thereby confining the energy associated with a given mode to

a small geometric region. This phenomenon is referred to as mode localization. Pierre [3]

showed that strong mode localization and eigenvalue curve veering, are two manifestations of

the same phenomenon. Therefore, the investigation of the curves of the eigenvalues or natural

frequencies in the neighborhood of the ordered state is sufficient for determining the occurrence

of strong mode localization. That eigenloci veering phenomenon can occur in disordered struc-

tures under certain conditions has been explained qualitatively using geometric arguments in [4];

where it was also hinted that quantitative results should be obtainable by the use of singular per-

turbation analysis.

For mistuned linear chains, Pierre 131 and, Pierre and Dowell [5] showed that the straight for-

ward expansion in terms of mistuning parameters breakdown in the case of weak coupling. This

arises because the idealized sv,,tem that is being perturbed has natural frequencies with
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multiplicity > 1. They then developed a so-called "modified" perturbation technique which pro-

vided a good approximation to the exact eigenfrequencies and showed good agreement with

experimental results.

In the present note we show that the singularity causing the breakdown of the straight for-

ward expansion can be analyzed h%, he well developed singular perturbation techniques [61 and

an appropriate asymptotic expan,, ,!f tr the eigenfrequencies can he constructed which provides

a correct qualitative and good quantitative approximation. In order to explain the ideas and to

keep the algebraic manipulations to a minimum, the attention is focused on the now standard

example (3] of the coupled penduli shown in Figure 1.

The basic idea of the technique is the following: by applying the regular perturbation tech-

nique to the characteristic equation FM)., E, 6) = 0, of the system, we can obtain algebraic expres-

sions for the natural frequencies (eigenvalues) as a power series in the small parameter or pertur-

bation (say 8). The coefficients of the power series are dependent on the second parameter F_ and

these expansions are valid for all values of E so long as no singularities arise. Singularities occur

for values of c where the eigenfrequencies lose their smoothness and it is said that the expansion

is not uniformly valid for all E. Away from the singular parameter (E) values, the straightforward

expansions are good approximations and are called the "outer expansions". The neighborhood

of the singular parameter point is then stretched or rescaled in terms of a new parameter so as to

remove the singularity. The expansions in terms of the new parameter is valid only in the neigh-

borhood of the singular point and is called the "inner expansion". The inner and the outer solu-

tions can be matched where their domains of validity overlap and then a composite expansion

can be constructed which is valid uniftormly throughout the function domain for all values of the

parameter F.
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Consider the system of two weakly coupled penduli system as shown in Figure 1. The two

important parameters are the dimensionless coupling between pendulums R2 
- (k/m)/(g/l), and

the dimensionless length change Al. The corresponding eigenvalue problem generated by the

above system is given by:

[#R 2 -R2

L-R2 R2+(l+AI)- '

where R2 = / = k/m , W9 = 9l.

This eigenvalue problem results in the following characteristic equation:

FRe,6)=X2 -(1+26+-)X+ +6=0, (1.2)
_ i+2 I+E

where Al = E and R2 = 6.

We can express the solutions to (1.2) as regular functions of the parameters Al, 8 as follows:

X, (Al) = I + 6+ [1 + ] 62 + O(83) = ?, (Al) (1.3)

;62(Al) =1-W + 8 - I + -1 2 (1.4)

The expressions (1.3), (1.4) are the regular expansions of the eigenvalue problem for small cou-

pling. When Al - 0, X. and k 2 become unbounded and the continuity of the eigenvalues with

respect to the perturbation Al breaks down, as shown in Figure 2. Each eigencurve has two

branches, one valid for Al > 0 and the other for Al < 0. These branches are indicated by the

superscripts '+' and '-' which correspond to Al > 0 and Al < 0, respectively. Note that, since Al

and R2 = 8 have been treated as two independent parameters, we have no control over expres-
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sions (1.3) and (1.4) in the limiting process when Al -- 0 and 6 -- 0. B- forming the "inner

expansion" however, we can find an exact relation between these two parameters by taking into

consideration the nature of the singularity. Then Al and 6 becorie dependent parameters.

Asymptotically matching the inner and the outer expansions, then gives the composite expan-

sions which are valid throughout the ret,:ion of interest.

For the inner expansion. w e ,,>iurne that the physical parameters R- 6 and -%I = are

related (dependent) by a set of mathem tical parameters: -,. t 3 . and 4 by a "stretching

transformation of the form:

Co £ .t + : (.> (1.5)
J=2

where . is a new small parameter that is defined by:

6(4) = (sgn8)4.tb. (1.6)

The positive constants a and b are to be determined by the nature of the singularities of F(X,

E, 0) near E =eo, where £o is the singular point of interest. Let the dependent variable

= X(£({.),6(.)) be written as the expansion

Z "  Zj j . (1.7)

j=O

Note that for the pendulum problem F., E, 0) = 0 has a singular point at E = E, = 0. The

expansions (1.7) are called the "inner expansions" and the z s are called the "inner coefficients.

Substituting (1.5), (1.6) and (1.7) into ( .2). and by simplifying the inner expansions %,ith a=b=2

one obtains the following solutions:
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z.= 1+  +4 2 +  4 + 1.9)

I 2 = 2 + I 1.9

and

R2 =5=4
2

Keeping . fixed and taking the limit I I - cc, it is easy to see that z, matches asymptoti-

cally with XT. for -+ c and with k- for -. - cc. Similarly the inner solution z2 matches

asymptotically (I j '" cc) with k-1 and k2. Now combining the inner and the outer expansions

appropriately, we get the composite expansions:

X, F [+ R 2+ (1+ I)R'l (I - u(AI)) + I 2R -Al-R 2  +h1) +4.

+ # R2 V(AI/R2)2 +4

+ + RAI 2 _(I + )R4  - R2  -)R4

[1-+A2+R2 - 1+---R1 +0(R 6 ),

u(AI) I+(1.12)
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FI 2R22 1+ 2  R)2 4
)L2 2+ -(1 + )R4 ]2R2A/+R 2 - ( Al R ) 2 + 4

S R2 AI/R 2 )2 +4

+ 1 + R2 + ( + -)R 4  u(A!) - I-AI+Ah-+R-(1 + )R (1- u(Al))
Al A

1 ,

-[I +R 2 +( I + -R JIu(Al)-O (R 6

where

u(AI) f(l) 0 ,Al<0

The plots of eigenfrequencies kI, A 2 versus Al are given in Figure 3 for both the exact solu-

tions and the solutions obtained above by the singular perturbation technique. These are in

excellent agreement. Thus, the singular perturbation technique leads to qualitatively correct

asymptotic approximations that are often close to true solutions and can be used as a mathemati-

cal tool to generate quantitatively accurate solutions for a wide variety of linear and nonlinear

structural dynamics problems. The methodology is general and systematic and when combined

with elementary singularity theory, should provide a powerful technique to study the mode local-

ization phenomenon in any finite order linear or cyclic dynamic chain.
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ABSTRACT

An investigation of the eigenvalue loci veering and mode localization phenomenon is

presented for mistuned structural systems. Examples from both, the weakly coupled uniaxial

component systems and the cyclic symmetric systems, are considered. The analysis is based on

the singular perturbation techniques. It is shown that uniform asymptotic expansions for the

eigenvalues and eigenvectors can be constructed in terms of the mistuning parameters and these

solutions are in excellent agreement with the exact solutions. The asymptotic expansions are

then used to clearly show how singular behavior in the eigenfunctions or modeshapes leads to

mode localization.
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1. INTRODUCTION

In recent years there has been tremendous interest in the vibrations and structural dynamics

community in the phenomenon of mode localization. This interest stems from the recognition

that large systems composed of nominally identical subsystems inevitably involve minor devia-

tions from the idealized structures and these disorders or perturbations can, under appropriate

conditions, cause unexpectedly large deviations from the predicted behavior in the nominal or

idealized system modes. Important technical applications where these problems arise include

mistuned bladed disk assemblies [ 1,2] and large space structures [3,41.

It is well understood by now that the presence of small irregularities in nearly periodic struc-

tures may inhibit the propagation of vibration and localize the vibration modes. Depending on

the magnitude of perturbations (disorder) in the individual components and the strength of inter-

nal coupling between the subsystems, the mode shapes may undergo dramatic changes and

become strongly localized when small perturbations are introduced, thereby confining the energy

associated with a given mode to a small geometric region. This phenomenon is referred to as

mode localization. Pierre [5] suggested that strong mode localization and eigenvalue curve veer-

ing are two manifestations of the same phenomenon. Therefore, the investigation of the curves

of the eigenvalues or natural frequencies in the neighborhood of the ordered state is sufficient for

determining the occurrence of strong mode localization. That eigenloci veering phenomenon

can occur in disordered structures under certain conditions has been explained qualitatively

using geometric arguments in [6]; where it was also hinted that quantitative results might be

obtainable by the use of singular perturbation analysis.

For mistuned linear chains, Pierre [5], and Pierre and Dowell [7] showed that the straighdfor-
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ward expansion in terms of mistuning parameters breaksdown in the case of weak coupling.

This arises because the idealized system that is being perturbed has natural frequencies with

multiplicity > 1. They then developed a so-called "modified" perturbation technique which pro-

vided a good approximation to the exact eigenfrequencies and showed good agreement with

experimental results. In the case of strong coupling between identical subsystems, no such

difficulty arises and regular perturbation expansions in terms of mistuning parameters are uni-

formly valid.

For systems with cyclic symmetry or spatial periodicity, however, mode localization can

arise in the presence of perturbations which split the degenerate or coincident eigenvaluesr

irrespective of the strength of internal coupling [6]. Using differential topological ideas it was

shown qualitatively in [6] that circularly configured systems which have cyclic symmetry exhibit

complicated topological behavior even for strong coupling when small perturbations are

imposed. Furthermore, the frequency response of a perturbed cyclic system depends

significantly on the form of the perturbation. Such cyclic periodic systems are important to the

analysis of vibrations of bladed disk assemblies.

In the present work we show that the singularity causing the breakdown of the straightfor-

ward expansion can be analyzed by the well developed singular perturbation techniques [8] and

appropriate uniform asymptotic expansions for the eigenfrequencies and eigenvectors can be

constructed which provide a correct qualitative and good quantitative approximation. Prelim-

inary results on eigenvalue veering for the now standard example [5] of the coupled penduli

shown in Figure 1 were recently reported in a short paper [91. Here we present complete details

of the singular perturbation analysis for the eigenvalue problem of the coupled penduli system.

Using the uniform asymptotic expansions for eigenvectors, the occurance of mode localization is
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then related to sensitivity with respect to parameter variations. We then consider the simplest of

examples of systems with cyclic symmetry consisting of three identical masses arranged in a

ring, interconnected by identical springs and having individual torsional stiffnesses. The eigen-

value veering is here shown to exist even for the strong coupling case. Finally, based on the

solutions for the strong coupling case, behavior for the weak coupling limit is explored.

The basic idea of analysis by the singular perturbation technique is the following: by apply-

ing the regular perturbation technique to the eigenvalue problem AO = X, of the system, we can

obtain algebraic expressions for the eigenvalues and eigenfuctions as a power series in the small

parameter or perturbation (say &). The coefficients of the power series are dependent on a-

second parameter e and these expansions are valid for sufficiently small 8, for all values of e, so

long-as no singularities arise. Singularities occur for values of e where the eigenfrequencies and

eigenfunctions lose their smoothness and it is said that the expansion is not uniformly valid for

all e. Away from the singular values of the parameter (e), the straightforward expansions are

good approximations and are called the "outer expansions". The neighborhood of the singular

parameter point is then stretched or rescaled in terms of a new parameter so as to remove the

singularity. The expansion in terms of the new parameter is valid only in the neighborhood of

the singular point and is called the "inner expansion". The inner and the outer solutions can be

matched where their domains of validity overlap and then a composite expansion can be con-

structed which is valid uniformly throughout the function domain for all values of the parameter

e.
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2. THE COUPLED PENDULI

2.1 Singular Perturbation Analysis

Consider the system consisting of two weakly coupled penduli as shown in Figure 1. The

two important parameters are the dimensionless length Al, and the dimensionless coupling

between the two pendulums 8 = R2 = (k/m)/(g/l). The dimensionless parameter Al represents the

disorder or perturbation in the individual pendulums. It is important to point out that the dimen-

sionless coupling between the two pendulums 8 << 1 for weak coupling irrespective of A/. The

resulting eigenvalue problem in symmetric form generated by the above system is given by

A0=X0, (1)

where R2  o/w , cok =k m g gl,

[+R 2 -R 2

A -R2 R2+(I+AI) -1

For small values of 8, it is natural to expand eigenvalues and eigenfuctions in the regular expan-

sion as powers of 8 regarding Al as a parameter in the range of interest. Thus we write A, X, and

in powers of 8 as

A= A0 +A 18+A 28 2 +O(83), (2)

X= Xo + X1 8 + X2 8 2 +O(83), (3)

0= 0 + 018 + 028 2 + 0(83). (4)

Substituting (2), (3) and (4) into (1), equating coefficients of each power of 8 to zero, and solv-

ing the resulting sequence of homogeneous and nonhomogeneous linear systems gives the fol-

lowing expansions for the eigenvalues and the corresponding eigenvectors
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X= .1+8+ [(+ AI)MA J 2+O(3), (5)

(7)
1 I/( C+ 0/+8 8( + [/)// 182 +( 83), (7)

)= + i)/+ I 1 1 8  [ 082+0(83). (8)

In (7)-(8), C and C1 are arbitrary constants. The expressions (5) - (8) are the regular (outer)

expansions of the eigenvalue problem for small coupling 8 which depend on the parameter Al.

These are valid for sufficiently small 8 for all values of W. When Al -+ 0, (5) - (8) become

unbounded and the continuity of cigenvalues and eigenvectors with respect to the perturbation Al

breaks down. Thus, in the neighborhood of Al= 0 i.he expansions (5)-(8) become nonuniform

and singular or non-analytic points have therefore been identified. These eigenvalues in (5) and

(6) are plotted in Figure 2 for some small but fixed 8 as a function of Al. Each eigencurve has

two branches, one valid for Al > 0 and the other for Al< 0. These branches are indicated by the

superscripts '+' and '-' and correspond to A/> 0 and Al< 0, respectively. Note that since Al and

8 have been treated as two independent parameters there is no control over expressions (5) - (8)

in the limiting process when Al - 0 and 8 -+ 0. By stretching the neighborhood of the singular

parameter value Al =0 and by taking into consideration the nature of the singularity we can find

an exact relation between these two parameters. Then Al and 8 become dependent in the neigh-

borhood of the singular parameter value, called the "inner region". The solutions of the problem

in the inner region are called the inner expansions. Asymptotically matching the inner and the
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outer expansions, and combining them appropriately then gives the composite expansions which

are valid throughout the interval of interest in Al for sufficiently small 8. Before finding inner

expansions for the eigenvalues and the eigenfunctions, we mass normalize eigenfunctions 01 and

02 to get a unique set of eigenfunctions

-Al 0

= 1Al2 + (1 + AI)482 1+ 1+ AI 1+0(I2), (9)
012Al + (21 +AI)8 2

4A + _.(9

O Al + - +2 A2 8+0(82). (10)-

(I + Al). 2 + Al2  0

In the inner expansion, we assume that the physical parameters R2 = 8 and Al= e are related

(dependent) by a set of mathematical parameters 1 4, 3, .. and p. through a "stretching"

transformation of the form

=o

where g. is a new small parameter that is defined by:

6(p) = (sgns)pb. (12)

For fixed g, the quantity 4 serves as the internal variable. The positive constants a and b are to

be determined by the nature of the singularities of the characteristic equation F(X,e,8) = 0 of (1)

near F = r,, where &,, is the singular point of interest. Let the eigenfunctions 0 and the eigen-

values X be written, in the inner region, as the expansions
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O(e,5) = z(W A), )) =z1) = 1 ZjJ. (13)

X(sW8) = (A), 8(4)) = a (A±) = j (14)
j=0

Note that for the pendulum problem F(X,e,O) = 0 has a singular point at e = = 0. The expan-

sions (13) and (14) are the "inner expansions" and the zj's and flj's are called the "inner

coefficients". Substituting (11), (12), (13), and (14) into (1) simplifying the inner expansions

with a = b = 1, and solving the sequence of eigenvalue problems obtained by equating each

power of g to zero, we obtain the following inner eigenvalues Q1 Q2 and inner eigenfunctions

zI and z2

2

+ 2 -4 + -F4 k2 +++ 2 ), 
(17)Z2b0  2] +bo222

z 2 =bo + 1 +m2  g+ O(2),(18)

2 
(19)
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m= 2 +4 (20)

1 =(21)

I k2 g1 + 1 +

[rk+T~

and

bo  1(22)

1[m + + 2 1  (I +

Here the eigenvectors zt and z2 have been mass normalized. Keeping g fixed and taking the

limit 4 - c, it is easy to see that Qi'l matches asymptotically with X for -- cc, and with X2

for -- --e. Similarly the inner solution K12 matches asymptotically ([4 -- cc) with X-' and .,

In fact, it can be easily shown that the outer eigenvectors 01 and 0 2 match with the inner eigen-

vectors zi and z2 in exactly the way the eigenvalue branches match. The composite expansions

for the eigenvalues and the eigenfunctions are now obtained by combining the inner and the

outer expansions, and subtracting the common part of the two expansions. The resulting expres-

sions for the eigenvalues and the eigenvectors arm

C+O- 1+ j]2j(1u(AI))+ 1+8+ [1+-j21u(Al)

(Al/ )2
+' I+ 2-(A1//)+4/(AI/8) 2 + 4  8+018 +" ('A /) + 4  2- 82

2 1 1+ (2/8 +



X2m [1+8+ _1+ 82](1_U(,M)) + IT+.5 2

+OM I+ +_+8___+_]82____

Al Al

z'op + u(AJ) ' + (1-u(AI))02 - u(AI) + l

U2 8 8 +0(62),

1 82 2A12

which simplifies to

,Oomp = ao, LI + [ ~k26 I8. +0(82), (25)
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and

r 1 m2Al2is21
comp =bo [ + [ 2  8.+0(82), (26)

where k, m, ao, and bo are already defined in equations (19), (20), (21) and (22) respectively and,

(,AI_>0
u(Al) = I Al <0"

foAI<0*

The composite solutions (23) - (26) of the eigenvalue problem (1) are the asymptotic approxima-

tions for small coupling 8, and are uniformly valid for all mistunings Al.

The eigenfrequencies omp and coMp, obtained by the singular perturbation analysis, are

plotted in Figure 3 as a function of the parameter Al. Since the coupled penduli system is sim-

ple, exact expressions for the eigenfrequencies are easily obtained and they are also plotted in

the figure. The exact solutions for the eigenvalue problem are given in the Appendix. Clearly,

there is an excellent agreement in the exact frequencies and their asymptotic approximations.

The asymptotic solutions also clearly display the veering phenomenon.

We now study the behavior of eigenvectors for the case of weak coupling when Al - 0.

2.2 Eigenvector Rotations and the Sensitivity Function

In our earlier work (6] with mistuned cyclic systems, it was suggested that localization of

modes can be investigated by considering the sensitivity function, and the rotations of eigenvec-

tors under variations of parameters. The sensitivity function of eigenvectors or eigenvector sen-
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sitivity, in short, is defined as

IIS. Itr(SiS_) (Frobenius norm),

where Su = uffAu, S, denotes the complex conjugate of transpose of S,, u. is the modal matrix

of eigenvectors for zero coupling (8 = 0), 'tr' denotes the trace of the matrix, and Au = u - u0

where u is the modal matrix for nonzero coupling (8 0). The eigenvector sensitivity evaluated

for the pendulum problem turns out to be

Su = 1 ,(PlI+P2l)2+(pI+P21)2+(-PI2+p22)2+(P12+P22)
2  (27)

where

1 a.k 2 (AJ) 2

P11 =-aok+- + 2 )

72T 8(1 +k)

1 bom(AI) 2

P 12  = bom - I + 8(1 
2

72 8( + m2 )

P21 = ao -

?-22 = b-I

We can also define the angle-, between the eigenvectors 001 and 0 for the unperturbed (8 = 0)

system, and the eigenvectors 0,p and 0omp for the perturbed system. These angles are given

by

01 01, > I - P,
Cos01 - (28)

II 0oII II ,r2mpII I"
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Cos <402, cm > I - P2
0OS C2MP = pi

where

P1 =k+ k2 (AI)
2

8(l+k 2)

m2 (AI)
2

5(l+m2 )

Plots of the sensitivity function of eigenvectors and the cosine of the angle between nominal

(8 = 0) and perturbed eigenvectors, as a function of the mistuning Al, are given in Figures 4 and

5, for both the exact solutions and the asymptotic approximations obtained above by the singular

perturbation technique. These solutions are in excellent agreement. Figures 4 and 5 clearly

show and confirm the expectation that the eigenvectors for the weakly coupled system undergo

rapid changes in the vicinity of the singular point. Furthermore, either of the two criterion can

be effectively used as a quantitative measure and indicator of the mode localization

phenomenon.

3 CYCLIC SYSTEMS

Consider three identical particles, each of mass m arranged in a ring and interconnected by

identical springs of stiffness k. Assume that all the masses are hinged to the ground by torsional

springs of stiffness kt and that the radius of the ring is r, as shown in Figure 6. As a perturbed

system we consider the case when two of the torsional springs are perturbed by el and e2. The

eigenvalue problem corresponding to this system is given by
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[a+ei 1-2_W
-<2 a+e2 - (29)

2kc k, 2 k
where a = and 2 - -m m

As was the case for the example of linear chains, the interest here is in the development of

asymptotic expansions for the eigenvalues and eigenvectors in terms of the perturbation parame-

ters eI and E2. As we shall see the unperturbed cyclic system (el = E2 = 0), has a double eigen-

value and an isolated eigenvalue, and thus, introduction of perturbations is expected to split the

degenerate eigenvalue pair. Expecting that the eigenvector behavior will be governed by the

eigenvalue behavior, similar to the case of the coupled penduli, we restrict the developments to

expansions for only the eigenvalues of the perturbed three particle system.

The eigenvalue problem (29) results in the characteristic equation

F(X,,e,E 2 ) = X3 -(3a+e, + -2)X 2 
+ (3a 2 + 2ae2 + 2aE2 +-CI1F2 - 3(04)),

+ [2 C+(3a+El + E2 )-(a2 + ael)(a+E 2)]=0. (30)

First consider the unperturbed cyclic system the eigenvalues or roots of (30) are given by

-1 = -2 =a(2, X =3 -2o)2
= C 0 = a - C2

The corresponding roots of (31) are

-1 -2 _2 2

Thus, there is a coincident pair of eigenvalues and one isolated eigenvalue. So long as

W2 - 01), the two distinct eigenvalue are well separated.



-16-

To study the perturbed problem we first introduce the coordinate transformation X = X - a, so

that equation (30) results in

X- (eIE2)X2 + (E1E2 - 30)4)X + (04 (2co 2 + C+C2) = 0 (31)

We can express the solutions to (31) as regular functions of the parameters e, -2, and C by

writing X(Ei,£,) = YXj(El)c as a power series in E2. Substituting the resulting expression in
J=o

(31) and proceeding in the usual manner, the expansions for the three roots of (31) rum out to be

1 E2 1 ¢-°22-),
-= + 2 + 8 [02El 12 + O( 3 ) (32)

Xo2 = X02 + X12E2 + X22£ + 0(d) , (33)

03  + X3 13 2 + 1 2 + (82) , (34)

where

02 = 2 , 02 = 3X 02 1 - 3c4,

12(1-302) + 12 (2X02- 1)
322 = 3222021 -33

X3= 2 X 3 03X3-2Xo3£1 - 3c 4 '

2

X 123(el_ 3 X02) + 12(2103-e1)

3= 3X3-2XO31 - 3 C

and
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The expressions (32) - (34) are the straightforward expansions of the eigenvalue problem for

small F2. When el -. 0, X1 and X2 become unbounded and the continuity of the eigenvalues

with respect to the parameter or perturbation el breaks down. The third eigenvalue X3 always

remain bounded and continuity is preserved for all values of el so long as the interconnecting or

coupling spring constant kc is 0(1). These eigenvalues (32)-(34) are shown in Figure 7. Clearly

E = 0, E2 = 0 is a singular point of the expansions and (32)-(34) are the outer expansions valid

for small E2 away from el = 0.

Inner expansions, which are valid in the neighborhood of singular point or the parameter

values where the outer expansions breakdown are now obtained. The expansion process for the

cyclic system is very similar to the one presented in section 2 for the linear chain system. Thus,

the physical parameter perturbations el and e2 are related to a set of parameters 41, 42, 43, and .

via a "stretching" transformation of the form

= , + t j(gA&j, (35)

j=0

where g is a new small parameters that is defined by

5(4) = (sgn 8)pb . (36)

The positive constants a and b are to be determined by the nature of the singularities of

F(X,e,£2) = 0 near el = 0, the singular point of interest. Let the dependent variable or the

eigenvalue O(A) = WEI (P.), E2(g)) be written as the expansion

F(37)
j=o
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Note that for the cyclic system F(,£ E2 = 0) has a singular point at eI = E2 = 0. The expan-

sions (37) are called the "inner expressions" and the Qjs are called the "inner coefficients". Sub-

stituting (35), (36) and (37) into (30), simplifying the inner expansions with a=b=l, and perform-

ing the perturbation analysis, the following roots of (30) are obtained

-uJ)10244- 2.+ 1 (38)

!Q2 J02 +2+ 12 -1.+ 12 + O 3 ) (39)

Q)3 -2a _.,2 + -2 + (42-4+ 1);jt2 + 0(g,3), (40)

where

E=I (F+-)2+ "2- and 12 3+)

3 3

Keeping gt fixed and taking the limit I -* c, it is easy to see that Q1 matches asymptotically

with X+ for -- cc and with X!1 for -- -- c. Similarly the inner solution Ql2 matches asymptoti-

cally ( ooJ -- c) with X+ and X2 . As expected, the third root 3 automatically matches with x?

as no singular behavior is displayed in this case. Now combining the inner and the outer expan-

sions appropriately, we get the composite expansions

X omp = %a(U(£1)) + X1(lU(()) + - I u(£) (common parts of 2 , [)I)

- (1-u(cl)) (common parts of XI , 1),
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XM = XI(u(e1 )) + X2 (1-u(cl)) + 02 - u(et) (common parts of X, fl2 )

- (1-u(c ))(common parts of X2 ,Q 2 ),

3 X3
XcompX

where u(Cl)= 'e 2t0
E, <0'

Transforming these expansions back into the original coordinates gives the following composite

expansions for eigenvalues

cmp a+o 2 + 2

+ (1 + e1/e2)f2 - fll- (e1/e2 )f211 
1e + 0(e32), (41)

+ 2 ~l2 "1](1i/ 2 )2 - (l/ 2 ) + 1

caLmp = a+(O: + fl2 e2 +

[ 3 + e1/e2Q12 - (c1/e2 + I)L" 22 'jg + O(e]), (42)

2o +El-IE/2)2 - (e /e2) + 1 J
+c3mp pi 03 + (%13)E2 + ,.() - O(E) , (43)

where

(e1/E2 + 1) + (ei/e2)2 - (e1/e2 ) + 1

2 MP =  3~)

u33

2 (e /-E2  + 1)0- 1/(e22 )2 - (e +/e2 ) + 1

t2 = 3'

C.m
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X13 3XJ3 - 2Xo3el - 3c'

El O-c - P1
X03 - 2

Pt =  9 c + 2 c2c' E + e:1•

The plots of eigenfrequencies - c mp a mp as a function of ej are given in Figure 8a

and 8b. The third eigenvalue comp always behaves as a regular function as is clear from Figure

8a. These results show that for the cyclic system with strong coupling the effect of perturbation

is identical to that for the pendulum problem with weak coupling. That is, the curve veering of

the eigenvalues Xomp and X2om p is almost the same as the curve veering of the weakly coupled

pendulum. Consequently, it is expected that the mode localization of the eigenvectors within the

strongly coupled cyclic system be similar to that in the weakly coupled pendulum problem.

Therefore, the results should be obtained for the singular behavior of the eigenvectors of the

weakly coupled pendulum problem in section 2 should be valid quatitatively for the cyclic sys-

tem.

The coupling constant k, plays a very important role in the eigenvalue veering behavior. For

the cyclic system, k, = 0 leads to three coincident eigenvalues as opposed to the case of strong

coupling when only a double eigenvalue appears. The composite expansions obtained earlier

were determined under the assumption that k, - 0(1). We now use these expansions and

explore the behavior of eigenvalues in the limiting ease of lc -4 0. Note that the coupling con-

stant (oc appear in the denominator of the asymptotic expansions (41)-(43). As co2 is reduced

the isolated eigenvalue .o moves closer to X1m and X2  and the variation of X's with E2ch sltde n a mpe mp COP camp
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becomes very rapid, as is evident from Figures 9 and 10. Figure I I shows the three composite

eigenvalue expansions for small el and E2 as a function of k,% (or ,) and the expansions clearly

breakdown in the vicinity of k1, = G. Thus, the composite expansions (41)-(43) are behaving as

outer expansions in the weak coupling limit. It should be possible to now construct uniformly

valid expansions for eigenvalues as a function of the coupling constant k, by one more use of the

singular perturbation technique whereby the neighborhood of K1 = 0 is stretched and an inner

expansion is developed. The localization and veering behavior of thus obtained composite

eigenvalue expansions, which will be valid for small enough E2 for all el and k, is expected to

be much more interesting and is being presently studied.

4. SUMMARY AND CONCLUSIONS

Singular perturbation technique has been applied to two parameter eigenvalue problems to

obtain uniformly valid algebraic expansions for the eigenvalues and the eigenvectors for two

example systems. Utilizing these expansions, eigenloci veering and the mode localization

phenomenon have been studied. A sensitivity function and the rotation of eigenvectors have

been introduced as criteria to visualize mode localization phenomenon in the vicinity of singular

points. One example, that of the two weakly coupled penduli, represents systems of the linear

chain type with only one weak coupling spring. The example of three mass particles belongs to

strongly coupled systems with cyclic symmetry. For the coupled penduli system, the eigenvalue

and eigenvector expansions are found to be in excellend agreement with the exact results.

It is shown that eigenvalue curve veering occurs both in the weakly coupled penduli and the

strongly coupled cyclic system. The effects of mistuning perturbations which split a pair of

coincident eigenvalues is identical in both the cases. T1 eigenvector sensitivity function and
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the angle of rotation of eigenvectors are shown to be two equally good candidates for visualizing

mode localization phenomenon near singular points. The composite expansions for the per-

turbed cyclic system, which are uniformly valid in the case of strong coupling, are shown to

breakdown in the limiting case when the coupling stiffness goes to zero. This clearly is related

to the fact that all the eigenvalues for the cyclic system in the weak coupling limit are identical.
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APPENDIX

It can be easily shown that the two free vibration natural frequencies co; and the correspond-

ing mass normalized eigenvectors x' for the coupled pendula problem, obtained from the exact

solution of the eigenvalue problem, are given by

2 ~ 2, 2[ + I -4R +1_ 2 + I '2 2 -=2R 2  1 - 2 + - 1 (I+AI)2 ]'

=a

where a=
+/x10)2 + (I+ A)2
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1

+Xi1) 2 +l + A1) 2

h4 i R4+ ,2

I I + 4R4 + ]2

The sensitivity of eigenvectors is then given by

IIsTII - 4(_qi+q2)2 + (q, I +q21)2 + (_q1 2-qz) 2 + (q12+q22)2

where

I

q1I =13 Xii+

1
1

q 2 1 = a - T

q22 =- I

The angles between the nominal and the perturbed eigenvectors are then
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1I~

1-X2
9Ts



- 25 -

REFERENCES

1. Afolabi, D. 1988 Journal of Sound and Vibration 122, 535-545. A note on the rouge failure

of turbine blades.

2. Afalobi, D. 1988 ASME Journal of Turbomachinery 110, 251-257. Vibration amplitudes

of mistuned blades.

3. Bendikson, 0. 0. 1987 AIAA Journal 25(9), 1241-1248. Mode localization phenomena in

large space structures.

4. Cornwell, P.J. and Bendiksen, 0.0. 1989 AIAA Journal 27(2), 219-226. Localization of

vibrations in large space reflectors.

5. Pierre, C. 1988 Journal of Sound and Vibration 126, 485-502. Mode localization and

eigenvalue loci veering phenomena in disordered structures.

6. Nwokah, O.D.I., Afolabi, D. and Damra, F. M. 1990 In Control and Dynamic Systems

35(2), 137-164 Orlando: Academic Press. On the modal stability of imperfect cyclic sys-

tems.

7. Pierre, C. and Dowell, E. H. 1987 Journal of Sound and Vibration 114, 549-564. Localiza-

tion of vibrations by structural irregularity.

8. Matkowsky, B. J. and Reiss, E. L. 1977 SIAM Journal on Applied Mathematics 33, 230-

255. Singular perturbations of bifurcations.

9. Happawana, G.S., Bajaj, A.K. and Nwokah, O.D.I. 1991 (to appear) Journal

of Sound and Vibration. A Singular perturbation perspective on mode localization.



lei 02

Figure I. Two coupled oscillators.



2-

1.8- 8=0.01

1.6-1

XX2

0.8- 2

0.4 -

0.2 h

01
-2 -1.5 -1 -0.5 0 0.5 1 1.5 1

Figure 2. Outer expansions for cigenvalues indicating the region of singular behavior,

86=0.01 , 8=0.005.



1.06
SExact solution

- Composite expansion
1.04-

1.02 - 2 0.0 1! omp

8=0.001

0.98

0.96-[

0.94 1 1

-0.05 -0.04 -0.03 -0.02 -0.01 0 0.01 0.02 0.03 0.04 0.05

Figure 3. Comparison of the exact eigenvalues with those obtained from the composite expan-

sions; 8 =0.01 ,8 = 0.001.



1.6

1.4

1.2 - 0.001

W 10 -

z 0.8-

0.6-801

0.4

0.2

0 1-
-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5

Figure 4. Comparison of the exact eigenvector sensitivity with that evaluated using the compo-

site expansions; 8 = 0.01 , 8 = 0.001.



0.5

0.9

z 0.91

0.85 8=.0

U 0.8-

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5

Figure 5. Comparison of the exact eigenvector rotations with those obtained from the compo-

site expansions; 5 = 0.01 , 8= 0.001.



M

kc 
kc

kt + E2 kt + ol

kt
M

r 
kc

Figure 6- Model of a three bladed disk assembly.



14- E2 = 0.1

12-12 

0

X 2 X+

Figur 7. OueXxasosfrte+gnauso heprubdcci ytmidctn h

reino8iglr-hvok.=2 ~=1 2=.,r ,m=1



2x
XcomP

-2 0.5 -. -000 0.5 01 010.

5£

Fiue 4-Egn~usfo opst xasin o h etre ylcsse;l~2

3 1,£ .,m ,r=1



7.15

7,

6.95

6.85
-0.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2

Figure 8b. Behavior of the two eigenvaiues I X2  soigcreveigfrtesrn
cOM p shwnCcrevern frte Pn

coupling case; k,~ = 2, k, = 1, IC2 =01, Mn=1 r 1



15,

2

J1

0 kc =0.01
E2 =01

-0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4

Figure 9. Composite eigenvalues in case of weak coupling; c~ = 0.01, kt = 1, E2 0-1 1, r



7.2

7.15-

7.1

6.95P

6.9

6.9-

-0.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2

Figure 8b. Behavior of the two eigenvalues )LI ;X2  soigcreveigfrtesrn
coMP coMP soigcreveigfrteso

coupling case; k, = 2, kt = 1, E2 = 0. 1, Mn = 1, r = 1.



to_

6

4

0-

-101
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

kc X10-3

Figure 10. Behavior of the composite eigenvalues as a function of the coupling parameter kce;



CONTROL AND DYNAMIC SYSTEMS. VOL. 35

ON THE MODAL STABILITY OF IMPERFECT CYCLIC SYSTEMS

Osia D.[ Nwokah*
Dart Afolabi'*

Fayez M. Damra-.

*School of Mechanical Engineering
***School of Aeronautics and Astronautics

Purdue University
West Lafayette, !N 47907

**School of Engineering and Technology
Purdue University

Indianapolis, IN 46202

1. Inr oducuon ....................................................................................
I. Topological Dynamics of Quadratic Systems .............................

I1. Bounds on Amplitude Ratios ........................................................
IV. Eigenvectoc Rota ons ...................................................................
V. Exam ples ........................................................................................

V I. Conclusions ....................................................................................

References ......................................................................................

I. Introduction

An important subject in the dynamics and control of structural systems is the
behavior of structures under transient or steady state excitations. In this work, we
examine the stability of the geometric form of the spatial configuration of sm'uc-
rural systems when the structural parameters are subject to small perturbations,
and the implications of this instability for frequency response. We show that .Lr-
cularly configured systems which nominally have cyclic symmen-y exhibit com-
plicated topological behavior when small perturbations are impressed on them.
We further show that the frequency response of a perturbed cyclic system
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depends considerably on the form of perturbation. On the other hand, a rectilinear

configuration of nearly identical subsystems does not ehibit modal instability.

Usually, both kinds of systems are implicitly assumed to uncergo similar qualita.

tye behavior under a small penurbaton whereas, in fact, the cyclic configuration

exhibits a very stange behavior, [1].

The distinction between the behavior of cyclic and rectilinear configurations

under a perturbanon is important because many engineering structures are com-

posed of identical subsuuctures which are replicated either in a uni-axia chain,

or in a closed cyclic formation where modal control is of interest. Examples of the

former case of periodicity occur in structures such as space platforms and bridges,

which have an obvious periodicity of the uni-axial kind. An example of cyclic

periodic systems is a turbine rotor, which consists of a set of nominally identical

blades mounted on a central hub, and often referred to as a 'bladed disk assem-

bly" [2]. When all the blades are truly identical, then the system is referred to in

the literature as a tuned bladed disk assembly. Practical realities of manufacturing

processes preclude the existence of exact uniformity among all the blades. When

residual differences from one blade to another-no matter how small-are

accounted for in the theoretical model, the assembly is then termed a misnmed

bladed disk.

Our primary focus in this investigation is on bladed disk assemblies. However,

since we approach the problem from a generalized viewpoint, the conclusions to

be drawn will be of relevance to other periodic systems. Therefore, in the sequel,

we borrow the 'tuned' and 'mistuned' terminology from the bladed disk litera-

ture, and apply it to repetitive systems having cyclic or uniaxial periodicity. Thus,

in a tuned periodic system, the nominal periodicity is preserved, whereas it is des-

troyed in a misrned system.

If we examine the system matrices of the linear and cyclic chains, we observe

a fundamental diftrence in forms. The dynamical matrix of the linear chain is

usually banded. Banded matrices are frequently encountered in structural dynam-

ics. A special form of banded matrices that is of interest here is the ti-diagonal

form aij =O,i-j 1. On the other hand, the system matrix of a cyclic chain has a

circulant submanix, or is entirely circulant or block circulant [3]. Circulant

matrices usually arise in the study of circular systems. They have interesting pro-

perties that set them apart from matrices of other forms [4]. We note that all
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circulants commute under multiplication, and are diagonalizable by the fourier

matrix. One of the most important consequences of the foregoing is that the cyclic

chain has a series of degenerate eigenvalues, whereas the eigenvalues of the uni-

axial chain are all simple.

We know that a tuned circulant matrix, having a multitude of degenerate

eigenvalues, lies on a bifurcation set [5]. Thus, the reduction of such matrices to

Jordan normal form is an unstable operation [6]. Consequently, if a non-singular

deformation due to rmisuning is applied to a circulant matrix, then some of the

eigenvectors will undergo rapid re-alignment, if the mistuning leads to a crossing

of the bifurcation set. If however, no crossing of the bifurcation set takes place,

then the tuned system's eigenvectors will be very stable, preserving their align-

ment under small perturbations. In contrast, the eigenvectors of a tuned banded

matrix, being analytically dependent on parameters, are not generally disoriented

by rmistuning until the eigenvalues are pathologically close [7].

If one examines the literature in structural dynamics, it is observed that some

unusual behavior has been reported in the study of perturbed cyclic systems. This

has been the case in various studies of rings [81, circular saws [9), and other

cyclic structures [101. But that such anomalous behavior is due to a "geomeric

instability" inherent in the cyclicity of the tuned system has not been previously

established in the literature, to our knowledge. Indeed, it is often assumed (see,

for instance, [I I]) that the linear and cyclic chains would undergo the same quaLi-

tative behavior under slight parameter perturbations so that small order perturba-

tions of the system matrix will lead to no more than small order differences in the

system response relative to the unperturbed case, if the system has "strong cou-

pling".

In this paper, we show that such an assumption regarding qualitative behavior

does not actually hold in the case of cyclic systems; that cyclic systems exhibit a

peculiarity of their own under parameter perturbation; that, although a certain

amount of mistuning may produce little difference relative to the tuned datum in

one case, a considerable change could be induced if a slightly different kind of

mistuning is applied to the same cyclic system; that such apparently erratic

behavior arises in cyclic system, even when the system has "strong" coupling. In

carrying out this work, we borrow from certain developments in differential topol-

ogy specifically, from Arnold's monumental work in singularity theory [6, 12-16].
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I. Topological Dymmics of QuadraUti Systems

In mistined dynamical systems. a major concern is to understand which

specific kinds of mistuning parameters. or combinations thereof, lead to unaccept-

ably high amplitude ratios. In this section, we give an indication of the taxonomy

of the different consequences of rmistuning in the hope of isolating those that lead

to high ratios.

Consider a mechanical system under small oscillations with kinetic and poten-

tial energies given by:

T=-Ax 'W >0, U= Ax Kx >0; .,x*0. (2.1)

Under the influence of a forcing function f (t), (2.1) produces the following equa-

tions of motion by application of Lagrange's formula:

Mx +Kr =; x, f C V (2.2)

where M and K are symmetric -d positive definite. A theorem in linear

algebra shows that there exists some non-singular uansformation matrix P such

that:

PrP =1, and PTKP = A (2.3)

where A is a diagonal matrix of eigenvalues whose elements satisfy the equation:

det(M - XK) = 0 (2.4)

Consequently, by putting

x = Pq, (2.5)

substituting for q in (2. 1), and premultiplying every term of the resultant equation

by pT, we obtain a new equation set:

4 + Aq = f, (2.6)

wheref f PTf. Hence:

i+ X+,q =f'i for i = I,2,-. n. (2.7)

Systems which can be reduced to the above form are called quadratic systems.

They are called quadratic cyclic systems if, in addition, M and K are cyclic or
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circulant matices. Our basic aim is to determine the nature of the changes in the
dynamical properties of a quadratic system of a given order, under random
diferential perturbations in M and/or K. Central to this investigation are the topo-

logical concepts of structural stability and genericity.
Let N be a set with a topology and an equivalence relation e. An element x e N

is stable (relative to e) if the e-equivalence class of x contains a neighborhood of

X.

A property P of elements of N is generic if the set of all x c N satisfying P

contains a subset A which is a countable intersection of open dense sets [17].

Genericity is important 1 our context because a generic syscem will in effect

display a "typical" behavior. More concretely if a given generic system gives a

certain frequency response, all systems produced by differential parameter pertur-

bations about the nominal system will also produce frequency response curves

that are not only slight perturbations of the original nominal response but also

geometrically (isomorphic) equivalent to it. Such systems are called versal defor-

mations of the nominal system [ 14]. A versal deformation of a system is a normal

form to which it is possible to reduce not only a suitable representation of a nomi-

nal system, but also the representation of all nearby systems such that the reduc-

tion transformation depends smoothly on parameters. The key to establishing ver-

sality, and hence genericity, is the topological concept of transversality.

Let NcM be a smooth submanifold of the manifold M. Consider a smooth

mapping f:r -- M of the parameter space r into M; and let t be a point in r such

that f (A.) e N.

The mapping f is transversal to N at g± if the tangent space to M at f (.) is the

sum:

TMf( ,) f. Tr + TNfcg)

Consequently, two manifolds intersect transversally if either they do not intersect

at all or intersect properly such that perturbations of the manifolds will neither

remove the intersection nor alter the type of intersection.

Lemma 2.1, see ref ( 14).

A deformation f(g) is versal if and only if the mapping f:r -+ M is transversal

to the orbit of f at g = 0.
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The abov- result is crucially important because:

(i) It classifies from the set of all perturbations of a given nominal system,

those that do not lead to radically different dynamical properties from the
nominal.

(ii) It separates the 'good" from the 'bad" perturbations and hence enables us

to concentrate our study on the bad perturbations. Let Q denote the family

of all real quadratic systems in R". The set Q has the structure of a vector

space of dimension /(n[n +-11). It can be shown that Q also has the struc-

ture of a differentiable manifold [13].
Let Q, denote the set of quadratic systems having v2 eigenvalues of

multiplicity 2, v3 eigenvalues of multiplicity 3 etc. Qv is called the degen-

erate subfamily of Q.

Theorem 2.1, see ref [131.
The transformation f:r -* Q is transversal to Q,.

Consequently, a generic family of quadratic sysi..ns of a given order is given

by a transformation, f, of the space of parameters r into the space of all quadratic

systems Q, such that f is transversal to the space of all degenerate quadratic sys-

tems Q,.
Hence Q, is the degenerate (bad) set and Q'Qv :s the generic set. Observe

that QIQ v and Q , are transversal. Consequently, the fundamental group of the

space of generic real quadratic systems is isomorphic to the manifold of systems

without degenerate eigenvalues.
The above discussion leads inevitably to the following conclusions:

(i) Radical changes in the dynamical properties of a nominal system occurs

under perturbations, when the perturbations take the system across the

boundary from Q/Qv to Q, and vice-versa.

(ii) Q, is a smooth semi-algebraic submanifold of Q, and can therefore be
stratified into distinct fiber bundles (141. By a bundle, we mean the set of

all systems which differ only by the exact values of their eigenvalues; but

for which the number of distinct eigenvalues as well as the respective
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orders of the degenerate eigenvalues are the same. Within the degenerate
set, Q., the crossing from one bundle to another can also lead to radical
dynamical changes. Each bundle is represented by a specific Jordan block
of a certain order. Note that each bundle is also transversal to Q.

Theorem 2.2, ref (14].
Qv is a finite union of smooth sub-manifolds with codimension satisfying

Codim Qv >2.

Theorem 2.2 has the following implications:

(i) Q /Q, is topologically path connected. This means that by smooth parame-
ter variations, provided that the number of variable parameters is less than
the codimension of Q,. it is possible to smoothly pass from one member of

Q/Q to another without reaching any singularity; that is, without
encountering any member of Q,. Such parameter variations will typically
not lead to radical dynamical changes in QIQ,.

(ii) Because codim Q, -2. it follows that a generic one-parameter family of
quadratic systems cannot contain any degenerate subfamilies. Therefore
under one-parameter deformations of a generic family, some eigenvalue
pairs may approach each other but cannot be coincident (i.e. cannot col-
lide). After approaching each other, they must veer away rapidly, giving
rise to the so-called eigenvalue loci-veering phenomenon [181, under one-
parameter deformations of generic families. This offers a theoretical expla-
nation for the eigenloci veering phenomenon which has been observed in
perturbed periodic systems without a corresponding phenomenological
base [18, 191. Furthermore, this phenomenon holds provided the system
has a quadratic stucture, irrespective of whether the model arose from a
continuous or discrete structural system [20].

This rapid eigenloci veering can, under the right conditions, produce the mode
localization phenomenon [18]. Since the dynamical properties of any linear
constant-coefficient system are totally determined by its eigen-structure (eigen-
values and eigenvectors), and since the eigenvalues are continuous functions of
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the matrix elements, it follows that radical changes in the dynamical properties of

a given system under differential parameter perturbations ensue principally from

a large disorientation between the eigenvectors of the tuned (unperturbed) and

mistuned (perturbed) systems. We study, in Section IV, the variation of eigenvec-

ton of generic families under differential random parameter -3erurbations.

Ill. Bounds on Amplitude Ratios

Consider. again, the equation set for the dynamics of quadratic systems:

M -o + Kxo =f, (3.1)

where M and K are positive definite matrices. For tuned cyclic systems, M and K

have the additional property of being circulant. Taking the Laplace transform of

(3.2) under zero initial conditions, gives:

(Ms 2 + K)X 0 (s) = F(s), (3.2)

or

A (s) "X(s) = F(s) (3.3)

where A =Ms2 + K. Suppressing s in all subsequent calculations leads to:

X 0 =A-' F. (3.4)

The positive definite nature of M and K guarantees that A -1 exists for all s on the

Nyquist contour. Under normal operations of the system, suppose A varies to

A + AA := A,. Let X0 then change to X 0 + AX := Xe. Then, for the same excita-

tion force as in the tuned state,

X, = (A + %A)- ' • F. (3.5)

The physical nature of the system guarantees that A + AA will always remain

symmetric but not necessarily circulant since a true mistuning destroys cyclicity.

Equation (3.5) can be rewritten as:

X, = (A + AA) -  • F = (I + A-A) -t . A-'F. (3.6)

Substituting (3.4) into (3.6) gives:



MODAL STABILITY OF IMPERFECT CYCLIC SYSTEMS 145

X, = (Y +AA)- "X0 . (3.7)
NormaLly A will be a differential perturbation of A, so that:

p(A- 1 M.) < 1,
where p(') is the spectral radius of (). Hence

- l= (_)k(A- ) . (3.8)
€ =0

Substituting (3.8) into (3.7) gives:

X, = j ('A -1 AA)'. Xo. (3.9)
k =0

Taking norms in (3.9) gives:

Xe 11 = 11 j (-I)' (A-'LA )kX 0 11
4=0

-aA' l tX 0 I., (3.10)

Let )A-tAA )L r. Because M is a differential perturbation of A. it follows
that r < 1. Hence:

1i K, it :S LX 0 it i r~ = 1X0 1 f1 +r+ r2 + +.

LIX 01 , sincer<1. (3.11)
1 -r

Or:

LX,I _ _ 
(3.12)IXo 1L 1 -r I- A-tAA II (3.12)

Write
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A =D +C =D(I +D-IC) (3.13)

where is a diagonal matrix of the uncoupled system dynamic matrix and C is

the relative coupling dynamic matrix, such that the minimum eigenvalue of

D- 1 C at any frequency gives the coupling index of the system at that frequency

[211. If the norms in (3.12) are H- norms, then, over the frequency interval :

ess.sup <'(;ot- 5ess.sup 1 (3.14)we f 'I X.) (W) 1. Cm., frn AA ((a)

CamA (w)

where Omg() and a. ( o ) correspond to maximum and minimum singular values

of () respectively. Note that all the mtices and vectors considered above are
functions of frequency s = iw.

Because A is symmetric it follows from (3.13) that:

am..(A)= an.(D[I + D-IC])

= (D) X,(l + O-'C),

Sd,,[1 + X.,(D-C)l (3.15)

by the eigenvalue shift theorem, where d,,, is the minimum eigenvalue of D. Let
IlX'(o ) I1,.

d, = a, and X,(D-'C) = X0 . At any frequerv w, let = 1(0).1lX0 (w) II.

Then (3.14) reduces to:

8= ess.sup 11(w) :5 13.16)
-ess.sup aaxA(w)

We a(w)(I + m

where f is a frequency interval of interest. In some cases it is possible to define

Q by the semi-open interval fQ = [ 0 -). Here X0 is called the coupling index of
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the system. The system is decoupled when Xo = 0. It is weakly coupled if

X < 1, and is strongly coupled if Xo > 1. In general. 0 0.o : -. Observe that

10(k, ) is a function of both the structural coupling k, and frequency w. Inequal-

ity (3.16) leads to the following conclusions:

(i) The mistuned to tuned amplitude ratio is determined by the maximum peak

of the mistuning strength amxAA (C), the minimum strength of the weakest

link in the system a (w), and the minimum peak of the coupling index

(strength) Xo(w).

(ii) A variation in rigidity (coupling) affects the ratio of (3.16) monotonically

for fixed values of ..uxA) and a. This is because at any given fre-

quency, X0 varies continuously and monotonically as the coupling is varied

[131.

(iii) A reduction in a caused by a reduction of mass of the blades, and/or more

flexible blades, increases the ratio (3.16) monotonically. More specifically,

at any frequency when Xo -4 0, from (3.16):

8, : ess.sup a M , o ,, A c)> ,V mQ

W a a(w) - a,,,A (w) I 1 I ocm~~a>,~D~

Hence under weak coupling across the frequency interval, the amplitude

ratio depends entirely on the relationship between the frequency response

of the misuning strength and that of the strength of the weakest blade in

the assembly. Under these conditions, the maximum amplitude ratio will

arise from the blade with the worst mistune [22].

IV. Elgenvector Rotations

In section U, we showed that generic systems QiQ, will typically have dis-

tinct eigenvalues, while degenerate systems Q, will typically have repeated

eigenvalues. To study eigenvector perturbations for generic systems, regular

analytical methods will work, while for eigenvector variations in the system Q,

we require singular perturbations [231. Let A e C' A be the dynamic matrix
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arising from any system Q, G Q/Q,. Let r represent the parameter space and let
A F be a p-dimensional parameter vector. If Codim Q, ? r, then for any
g e Fre RP, where p<r, differential parameter variations in A(g) will not lead to

eigenvalue degeneracies. Thus, if the eigenvalues of A( i), given by
X1i.J), X2 (9), - ,.,,(g), are distinct when g=O they will continue to remain dis-

tinct when g is small, by continuity arguments.

Let

A(8i) =A(O) + 8A, (4.1)

where:

8A =84k A (g) I goo (4.2)

8A can be expanded in Taylor series form as: MA = AA + higher terms dependent
on p.. To a first order approximation we can write th,; perturbed matrix as:

A Ao + AA. (4.3)

Write

Ao =U A U- 1  (4.4)

where U is the modal matrix of A0 , and V* = U-1 where:

U = (uL. u2. ",UJ,

and

V,=[Vol V2

with

A = diag(Q., X2 , ,X

where () is the complex conjugate transpose of (.

Since AO is also generic, we can write the perturbed modal expression as:

Ao + AA = [U + AU][A + AA]I[U + AU] - 1 (4.5)

where AU is the perturbation in U resulting from AA while AA is the
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corresponding perturbation in A resulting from AA. Under eigenvector normali-

zation, II u II = I. and I u, + Au II = 1. Equation (4.5) can be solved as:

AoU + AAU + AoAU = UA + UAA + AUA (4.6)

where we neglect second order terms like AUAA and AAAU [24]. As a measure

of the eigenvector variations, we begin by writing Au as a linear combination of

all the eigenvectors since the eigenvectors span the whole n-dimensional space.

Thus:

Aui = . 1,i uj (4.7)
j=1

Or:

AU = UL. (4.8)

Now solving for AA in (4.6) gives:

AA = U- 1 AoU + U- ' AAU + U- ' A 0 AU- A- U-' AUA. (4.9)

Observe that U- 1 AoU - A = 0, so that

AA = U- ' AAU + AL -LA. (4.10)

Notice that the diagonal elements of (AL - LA) are zero. Hence:

Axi = [ U-1&4AAUL = vi Mu i .

To solve for AU, we need L. The off-diagonal elements of L are given by Skelton

[241

li= (Xj- i)-' v* AAu fori*j, i,= 1,2 "" n,

or:

li= (X - Xl) - ' v AAui for isj, ij = 1,2 .. n.

To determine L., observe that the constraint equation 11 ui + Au, B = 1 contains

1ij. Thus

lui + Au II = (< ui + Aui, u5 + Au > = 1. (4.12)
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Or:

u, ui + 2ui Aui + Aui Au = 1. (4.13)

But ui u = 1, so that

2ul* Aui + Au4Aui = 0.

Therefore:

lui = l = U , u+ Ii ui (4.14)
J=L j=I

101

= Xi + i Ui

where:

x,= 11 us. (4.15)
j=1
101

Thus:

13 + (2 + 2u 1xi)Ii + (2uix + 4x,) = 0 (4.16)

Lettng:

Zi = Uix i

and

Yi = Xixi,

gives (on accepting the positive solution of the quadratic):

ii = - (I + Zi) + (I + Z - yi) .  (4.17)

Since the eigenvectors ui and u1 + Auj can be normalized to unity and since each
vector is represented by a magnitude mi and an angle Oi, the natural measure of

modal variations is O since mint after normalization. Knowing all the elements

of L, we can now determine 0i as:
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<ui, ui + Aui> = I u1i lui + tu i II Cos ei. (4.18)

But IuiUI = 1Iui +AujI = 1.
Hence:

COS = <ui, Ui> + <Ua, Aui>

= I + U, (xi + lii ui)

= 1 ,. 8xi + la

= ( + zi yi) ' , 0O:Oi < /2. (4.19)

Consequently for the occurrence of no vector rotation under parameter variations,
we require:

Z -yi = 0 (4.20)

Or:
x*,i ,*xi - x*xi = X,8~ ~i =0 (4.21)

This implies x, belongs to the null space of (uiu4 - I), that is:

(uiui - 1) Iji u, = 0 (4.22)
J= 1

jai

where:

li = % i j)-1 v AA ui i sj

The nearer the expression (4.20) is to zero, the less the corresponding eigenvector
rotation under the given perturbation. Let

=4. tji U0 (UlU0 Ili up i 1, 2 ... n.

Then max ( a4) gives the eigenvector with maximum rotation.
i

The conclusions are the following:
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a) If the separation between the eigenvalues is very large. (i.e. (XO - X,) is
very large for all ij), then li is relatively small ai. eigenvector rotation
will be correspondingly small.

b) If v; A5Au, = 0, then eigenvector rotation will also be relatively small, pro-
vided Ili 0 a.

For example, if A 0 is Hermitian as is the case in all quadratic systems, and

AA = al, a e C, then

v, ..%Au, R 0, V i~j = 1,2, ""n.

Thus, identical increases or decreases in the diagonal elements of a quadratic sys-

tem will not produce unexpected amplitude excursions [25] because it cannot

produce eigenvalue splittings in formerly degenerate families. Therefore, such

perturbation cannot take a system either across the boundary of the bifurcation set

or across different bundles of Q,. Geometrically, this implies that degenerate

eigenvalues in systems belonging to a bundle in Q, cannot be lifted by perturba-

tions that leave the perturbed system in the same bundle of Q. Indeed, define

the eigenvector sensitivity matrix of a quadratic system as

S = AUU - t = L,

from eqn. (4.8). Defining the eigenvector sensitivity metric measure by

SF = IIS Ii Ip

where Sp is the Frobenius norm of S shows that the maximum eigenvector sensi-

tivity is obtained at the positions of minimum eigenvalue separation, which is not

difficult to compute. Alternatively, (SF)mu also corresponds to the position of

maximum angular rotation between the tuned and mistuned system eigenvectors.

This condition is evidenced by strong eigenloci deformations.

If A (o) is a frequency response matrix arising from a generic system, the

eigenvalues k.(ao) and eigenvectors ui((o) are also continuous functions of fre-

quency. We can therefore plot the frequency response functions SF(WO) to deter-

mine the fre-"iencies at which maximum deformations take place.
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V. Examples

To illustrate the theory so far developed we consider two examples. The first
is an interconnected linear chain of oscillators. This has been studied by Arnold
(13] and more recently by Pierre [181.

Example t: .Mfode Localization in Generic Periodic Systems.

Consider a coupled pendulum, as shown in Fig 1, with identical masses but of
different lengths 11 and 12, where l, is a perturbation of 11, i.e., 12 = (l + All). If

we put l t = 1, then the kinetic energy is given by

T= M m(1,o + (I + al)' oil 5.1)

while the potential energy is given by

U m1.L +m(I + AbL)i + -L(el -lB2)2 (5.2)
2 2 2

/ (I +t /

Fig. 1. Two coupled oscillators.

Under unit gravitational force, application of Lagrange's equations results in the
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equation of mouon:

.w I+ [K] [ -0 (5.3)

where

.4 m m (l +'5)j (5.4)

and

-k m (I +, ,AW) + k]"

The dynamic matrix for Ene above system is given by

A(0 [ml + k- 2ml 2  -k } (5.6)-k mUl + WI) + k.-W2(I + / 2 " 56

Rewrite A (o) as:

The characteristic equation of A ((a) is given by

.2 _ (a +b)X + (ab - k2) = 0

Both M and K are symmetric and positive definite. The eigenvalues of A ( ' are:

, (a +) ± 4(a - b) + 4k2 ]
2 (5.8)

Note that X1.2 cannot be degenerate. Thus under one-parameter deformations, the

eigenvalues can deform but cannot collide.

Indeed,

a, = 1 a - b (5.9)
aa 2 'i(a -b) 2 + 4kZ

and
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Ax2  a -b
.a2 I a-b l  (5.10)

a(a-b)2 +4k2

Hence:

ax1  a 2  (5.11)
aa +aa

aa - y when a=b.

The distance between the eigenvalues is given by:

d. = IX - X21 = "(a- b)2 + 4k2 (5.12)

which assumes its minimum value of 2k when a =b or when [aXilaa] ' A This

represents the tuned state of the linear chain. For a fixed mistuning value (a-b),
d;L depends essentially on k. If (a-b) is small, it is clear that SF -4 - as k - 0.
The modal matrix of the chain is given by

-1 -1

U (a-b) -(a-b) 2 + 4k2  (a-b). (a- b)2 +4k2  (5.13)

2k 2k

O" serve that ui uu 0, IV k,a,b. Under tuned conditions, a=b, then

However, consider the very interesting situation when the mistuning to coupling
ratio is rather large. That is to say:

(a -b) >.
k

Then (a - b)2 3- k2 , and k2 becomes negligible in the eigenvector expressions.
Expanding the term under the radicals and neglecting second and higher order
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terms gives:

[(a- _b)2  k2] = (a-b) + kLf

(a-b)[ - (5.5)

In this case the modal mamx reduces to:

-1 -l

u, k a-b (5.16)
a-b k

An energy exchange now takes place. The second component of the first mode

becomes vanishingly small while the corresponding component of the second
mode becomes extremely large. This is an extreme case of classical vibration

absorber, and is the mode localization phenomenon. We therefore conclude that

mode localization (or exueme energy exchange) will occur in a generic system
under one-parameter deformations if the following conditions are satisfied:

" at any frequency w where the system is almost decoupled, i.e., X(O)o -+ 0.

(Note that X(co) 0 -4 0 as k-+O).

" when the mistuning to coupling ratio a :* 1.

k

At the localization stage the eigenvalue and eigenvector sensitivities take on their
maximum values, i.e. both IIAA A-' II j and IIAU U- II j have their maximum

values. Localized modes always produce:

II X II.8.-: 1. (5.17)
11x0 11.

Example 2: Cyclic Systems.

Consider three identical masses, m, arranged in a ring structure and intercon-
nected by identical springs kc. Assume that all the masses are hinged to the

ground by torsional springs of strength kt, and that the radius of the ring is r; as
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shown in Fig. 2.
The basic equations of motion of this "ring" is

Mx + K.x =f (5.18)

where

2k, + k' -KC 411
r

rM0 0
M= 0 M0,K= -k, 2kc + - -kc (5.19)

r

(b)

(a)

Fig. 2. Models of(a) the cyclic chain, (b) the linear chain
with three degress of freedom.
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Using group theoretic arguments [13], we can easily deduce that the above sys-

tem has degenerate eigenvalues occurring as doublets, by cyclicity of the

corresponding system matrices. Consequently. every quadratic cyclic system

Q, a Q,. Furthermore all perturbations of the above system preserving the

cyclic structure, leaves the modal geometry invariant [3, 251. Indeed the eigen-

values of the above system are given as:

k, k 3k k, 3k,
Xl =- .2 -= + -  , X3=- . (5.20)

Mr mr m mr m

Write the dynamic matrix of this system as:

A (w) = -b a -b (5.21)
-b -b

where

a =2k, + k' - Wm, b = k.

We now consider a diagonal perturbation of the form:

E = diag (e1, e 2 , e 3 ). (5.22)

Then

A,((o) = Ao( + E. (5.23)

This would correspond to the realistic situation where there are slight changes in

the values of the ground spring it, depending for example on how the blades are

coupled to the disk in bladed disk assemblies [221. The major difference between

the behavior of (degenerate) cyclic systems and generic systems are the follow-

ing:

(i) For generic systems, all the eigenvalues and the distance between adjacent

pairs increases as the coupling k, increases. Consequently the probability

of mode localization decreases as k, and hence X(a) 0 increases. On the

other hand, perturbations which split the degenerate eigenvalue of cyclic

systems turn them into generic systems with pathologically close eigen-

values [7]. Hence for previously cyclic systems whose eigenvalues bifur-

cate under perturbations, SF is very large. Therefore such systems are
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susceptible to mode locuization, independent of the values of the coupling
strength k. Recall that

SF = ILI

where

Ilj = . X ,)-lv: AAuj, i~j, i~j = 1, 2,""n

(ii) Consequendy the only way to avoid large values of SF in such a situation is

if and only if i1 v, LAu, II a 0 or in the neighborhood of zero. Perturbations
that induce this condition are precisely those that will not induce radical
dynamical changes in mistuned cyclic systems. It was already shown that
if AA = aI, then il v 1,Aui I Sf 0

(iii) Of the remaining possible perturbations those that have
iv, £.%Au! 11 = E << I will produce minimum dynamical changes. All oth-

ers for which il v* Au, II is not small will give susceptibility to mode local-
ization, no matter how strong the interblade coupling.

The following numerical example amplifies the above observations. We con-
sider the case of the so-called 'strong coupling', using the following values:
k,=9.5, k, =1, a = 20, b = 9.5, e 3 =0, e 2 =-0.1, eI=0.1. Clearly, the ratio of mis-
tuning to coupling strength is very small. Now, in order to compute the frequency
response curves, we need some damping to obtain finite amplitudes at resonance.
Assume hysteretic damping of 0.01 for all cases. Without loss of generality, the
response to be computed is the direct receptance, i.e. the response of each node to
individual excitation. We turn the ring into a linear chain by putting
b = k13 = k31 = 0 in equation (5.21). Then A0 becomes a tridiagonal banded

matrix.

The frequency response of the tuned and mistuned systems of the linear chain
are shown in Fig 3. The illustration is windowed around one of the resonant fre-
quencies of the coupled system. Notice that, at the tuned state, ..1e amplitudes of
nodes 1 and 3 are equal on account of symmetry, while that of node 2 is double

that magnitude.
Because the system is now generic, and therefore exhibits modal stability, all

nodes have almost the same response patterns and magnitudes as in the tuned
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system. This is also the case when we change the sign Of e 2, from -0. 1 toO.!.1
When we repeat exactly the same procedure for the circulant system. a very

dierent picture is obtained. Fig 4 shows the response of individual nodes corm-
pared with the tuned case. This case corresponds to a 2-parameter perturbation,

with el 0.1, e2 = -0.1, e 3 =0.

(a) no&u

(b) node 2(c nd3

40 4

17 V 0 ;I A

Fig 3.j. L Efec ofmitui_ o ,reposecuvs fheliea _han.Noe h

preservatio oftesaeo h uvsaoudrsnne n h iia

diffrec 3. Ehe ofa aimpsintoud. esseres of the lie admrnser ch(n N-t- ted

Systems; ____mistuned system).
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(a) node I

U

(b ) node 2 (c) node 3

o -

US I LQ LA 4 LId 111 .4

Fig. 4. Effect of two parameter mistuning on the response curve of the cyclic
chain. Note the severe reduction in the amplitude at node 3, which is only 50% of
the tuned system ( ---- tuned systems; _ mistsned system).

Notice that the node with zero mistuning (mode 3) now has a reduction in
amplitude of almost 50%. This extremely unequal amplitude distortion (Fig 4) is
the case no matter how small the magnitude of the perturbation is, so long as we
keep the form of mistuning, and the mistuning does not actually vanish.

If we now change the mistuning matrix in a very small way, by making
e2=0.1, we obtain the response curves in Fig 5. We now notice a substantial
difference in the geometry of the curves in Fig 5, compared to those in Fig 4.
Thus, a very small change in the perturbation matrix, now results in a consider-
able difference in the vibration response at the individual nodes. The question of
which node will be most responding, or the one having the least amplitude, is now
not as easy as one would have expected. In Fig 4, it is node 3, while it is node 2 in
Fig 5. In fact, the amplitude of node 3 has been increased by about 100% from
Fig 4 to Fig 5, merely by changing only one entry in the system matrix from 19.9
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to 20.1, a change of less than I% !

The foregoing examples, based on a simple 3 degrees of freedom model of a

circular ring or disk only. illustrates the instability induced by cyclicity. It is

clear that the qualitative conclusions to be drawn from Fig 4 are inconsistent with

those from Fig 5, although the difference between the two mistuned matrices is

very small indeed. We emphasize that these results, obtained for just a cyclic

chain, are not necessarily applicable to bladed disks in all generality, especially

those models in which cyclicity is ignored. However, when bladed disk systems

are well-modeled to include the effects of blade coupling, blade or .isk misunming

and cycliciry, similar distortions in the geometry of the frequency response curves

can result. The subject is currently under investgation by us.

(a) nod l

0.

L,4 sI I"M s4

rtqueny

(b) node2 (c node3

I. U

= * . . , I

Us& a dL La L" L.

Fig. S. Elect of one.parameter mistuning on the response curve of the cyclic
chain. Note the symmetrical unfolding of the degenerate singulariy ( .... tuned
systems; __ mistuned system).
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AI Conclusions

(i) For generic systems, to which linear periodic chains of oscillators belong,
diffrential parameter perturbations are significant for the system dynamics
only under weak coupling conditions when the misruning to coupling ratio
exceeds unity (Example 1). Under all other conditions that do not induce

eigenvalue degeneracy; small magnitudes of mistuning, or the type of mis-
tuning, is irrelevant to system dynamics.

(ii) For degenerate systems to which a tuned cyclic system with circulant

dynamic matrces belongs, it is not just the mistuning to coupling ratio

which is significant in the determination of the perturbed system dynamics.

The type of mistuning assumes a far greater importance than the mistuning

to coupling ratio. All types of mistuning that move the system either across

the boundary of the bifurcation set, or from one fiber bundle of the degen-

erate set to another within Q, will lead to topological catastrophes [15].
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APPENDIX 4

The Stability of Frequency Response Curves

SUMMARY

In this Appendix, we highlight one of the results obtained so far, namely: that the
modes of vibration of cyclic structures are unstable under arbitrarily small
perturbation. This instability is not the usual ill-conditioned problem of
numerical analysis. It has nothing to do with the computational algorithm. The
eigenvector instability results because the perfect cyclic system is "physically ill-
conditioned", since a very small perturbation changes its dynamics
characteristics dramatically. This is significant because many aerospace
structures have circular profiles. The implication of eigenvector instability for
modal control, forced response amplitudes, sensitivity analysis, etc, therefore
needs further investigation.

Eigenvector Stability, Forced Response, and Turbine Blade Failure

The structural integrity of turbine blades used in jet propulsion systems is
sometimes compromised by the rare, but very dangerous, failure of some "rogue
blades". This problem has been addressed by different investigators of the
mistuning problem. However, they often obtained conflicting results.

This is because the response obtained from each rotor studied by each author
depends on the eigenvectors of the rotor system matrix A. In general, the matrix
A will be different for each model used by each author, although the difference
may be very small. In fact, mistuning is usually small.

However, the problem created by mistuning is not always small. Thus, although
each A in the family is differentiably dependent on the mistuning parameter e in
the neighborhood of the origin of E, the corresponding eigenvectors is not.
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Consequently two almost similar rotors may produce dramatically different
vibration responses, if their respective system matrices are different
perturbations of the same nominal matrix. An effective demonstration of
unstable frequency response curves in a simple 3 degree of freedom cyclic
system is given in the following examples. First, we examine the instability of
eigenvectors, then the instability of frequency response curves.

Numerical ExampleQ illustrating Eigenvector Instability

Example 1

At least three coordinates are required to define a cyclic system uniquely.
Therefore, we consider the simplest possible example: a 3x3 circulant matrix
with real elements, a, b e R.

aO= b a b (A4.1)

Using the following perturbation matrices, where e e R is a very small parame-
ter, we can generate two matrices A1 =aO+E1 and A2 =aO+E2 that are very
close, and such that these depend smoothly one, and as e-+ 0, A1 -+aO +- A2.
Thus, if

e[00 0 0
El [0 e0] E2 =[0 -2e 0 (A4.2,A4.2)

then

A=lb a+e b , (A4.4)
b b a

and

A2 = b a-e b (A4.5)



-3-

Note that II A1I I = II A2 i1,where I1II is some norm.

Consider, for an illustration, a situation when a = 100, b = 45, e = 0.1. We can com-
pute the eigenvalues of A 1 and A 2 respectively as

A1 = diag (10.0667, 145.0333, 145.1000) (A4.6)

and

A2 = diag (10.0000, 144.9423, 145.0578) (A4.7)

Notice that the eigenvalues of the two matrices are very close. If we now com-
pute the corresponding eigenvectors, we get

.9993 - .5004 1.0
U1 = .9993 - .5004 - 1. 0 (A4.8)

1.0000 1.0000

r 9985 - .2681 1.000

U2  1.0000 1.0000 - 2678| (A4.9)
1 1.9993 -. 7328 - .7313]

We now notice a significant difference between the eigenvectors at modes 2 and 3
of matrices A 1 and A 2 respectively. For example, there is no node (a point where
displacement is zero) in the third mode of U2, whereas there exists such a node
in U1.

Example 2

In the second example, we consider the following circulant; its elements are com-
plex but the matrix is not symmetric. It may be regarded as a deformation of a
symmetric circulant.

200+i(-10) -'F5+i(-5) -95+i(5) 1
A, = -95 +i(5) 200+i(-10) -95+i(-5) (A4.10)

-95+i(-5) -95+i(5) 200+i(-10)J

We test for modal stability by computing the eigenvalues
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A, = diag ( 10 + i( -10), 286.3398 + i(_- 10), 303.6603 + i( - 10)} (A4.11)

and the eigenvectors

I+i(O) - .5 +i(.866) -. 5+i
1I () I+ i(0) I + i0) (A4.12)

11+i(0) -. 5 +i(-.866) -. 5 +i(.8"6)

Now, we apply a very small perturbation to the matrix A 1 to get:

F201 +i(-10) -95 +i(-5) - 95 +i(5)1
A2  -95 +i(5) 199+i(-10) -95+i(-5) I(A4.13)

S95 + i(- 5) - 95 +i(5) 200 +i(- 10)]

It is clear that the matrices A, and A 2 are 'close, since I I E I I =0, where

1 -+ i(0) 0 +i(0) 0 + (0)1
E =Aj -A 2 = 0 + i(0) 1 + i(0) 0 + i(0) I(A4.14)

0 0+i(0) 0 +i(O) 0 +i(0)J

The computed eigenvalues of A 2 are:

A2 = diag (9.9977 + i( - 10), 286.3218 + i( - 10), 303.6807 + i( - 10)iA4.15)

Now, notice what happens to the third eigenvector of A I (eq. (A4. 12)), as a very
small change is made using E, eq. (A4.13), to transform it to A 2. The eigenvector
matrix of A 2 is:

0.993 +i(0.000) - .474 +i(0.820) - 0.556 +i( -. 867)1

0.997+ i(-0.000) - .531 +i(0.817) 1.000 +i(0.000)

Again, it should be noted that a very small change in the matrix A I induces a
significant qualitative difference in the eigenvector at certain modes of A i (eq.
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A4. 10) compared with the corresponding eigenvectors of A 2 , (eq. A4.16).

From Modal Analysis, sometimes known as eigenfunction expansion, we know
that the forced response amplitudes are related to eigenvectors. Thus, if the
eigenvectors are unstable under arbitrary perturbation, then, the forced response
curves will also be unstable under arbitrary perturbation. This is illustrated in
Figs A4.1 to A4.2 below.
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FigA4.2 Effect of two-parameter mistuning on the response curve of the cyclic mem-
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